铝对蚕豆叶绿素荧光和叶绿素含量影响探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Aluminum on Chlorophyll Fluorescence and Chlorophyll Content of Broad Bean
  • 作者:张慧敏 ; 刘东华
  • 英文作者:Zhang Huimin;Liu Donghua;Yungang District Department of Landscape Management,Datong, Shaanxi;Tianjin Normal University;
  • 关键词: ; 蚕豆 ; 叶绿素含量 ; 叶绿素荧光
  • 英文关键词:Aluminium;;Vicia faba L.;;Chlorophyll content;;chlorophyll fluorescence
  • 中文刊名:LVKJ
  • 英文刊名:Journal of Green Science and Technology
  • 机构:山西省大同云冈区园林管理处;天津师范大学;
  • 出版日期:2019-06-30
  • 出版单位:绿色科技
  • 年:2019
  • 语种:中文;
  • 页:LVKJ201912006
  • 页数:5
  • CN:12
  • ISSN:42-1808/S
  • 分类号:21-25
摘要
指出了酸雨及铝工业发展导致的铝毒害是限制植物生长的重要影响因子。选取蚕豆(Vicia faba L.)为材料,测定了不同浓度Al~(3+)胁迫下蚕豆生长发育,叶绿素荧光动力学参数、光合色素含量。结果表明:Al~(3+)胁迫抑制蚕豆幼苗生长,随着处理时间的延长和处理浓度的增加,Al~(3+)毒害现象加重。蚕豆幼苗根系受Al~(3+)毒害程度大于茎叶。Al~(3+)胁迫对蚕豆叶片的色素含量和叶片的潜在光化学效率(Fv/Fm)影响不大。低浓度Al~(3+)(10μM)胁迫对叶绿素荧光参数的影响较小,高浓度Al~(3+)(100 M)胁迫则明显降低了叶片实际光化学量子效率(ΦPSⅡ)和表观光合电子传递速率(ETR),PSⅡ有效光化学量子产量(Fv′/Fm′)也降低,同时非光化学淬灭系数(qN)上升。
        Alumihnium(Al) toxicity caused by acid rain and aluminum industry development is an important factor limiting plant growth. Vicia faba L. was used as the material to determine the growth and development, chlorophyll fluorescence kinetic parameters and photosynthetic pigment content of broad bean under different concentrations of Al3+. Al3+ stress inhibited the growth of Vicia faba L. seedlings. The phenomenon was more obvious with increasing Al concentration and prolonging the treatment time. The roots were more sensitive to Al toxicity than the stems and leaves. No obvious effects were observed in pigment content and photochemical efficiency of PSII(Fv/Fm) in leaves of V. faba after Al treatment. The high concentration of Al3+(100 μM) stress significantly reduced the leaf photochemical quantum efficiency(ΦPSII) and the apparent electron transfer rate(ETR). The photochemical quantum yield(Fv′/Fm′) also decreased while the non-photochemical quenching coefficient(qN) increased.
引文
[1]Bhalerao SA,Prabhu DV.Aluminium toxicity in plants-a review[J].Journal of Application Chemistry,2013(2):447~474.
    [2]Dai SF,Yan ZH,Liu DC,et al.Evaluation on Chinese Bread Wheat Landraces for Low pH and Aluminum Tolerance Using Hydroponic Screening [J].Agricultural Sciences in China,2009,8(3):285~292.
    [3]Elison BL,David LJ,Simon G.Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize [J].Plant Physiology,1998(118):159~172.
    [4]Kinraide T B.Identity of the rhizotoxic aluminum species [J].Plant Soil,1991(134):167~178.
    [5]Matsumoto H.Cell biology of aluminum toxicity and tolerance in higher plant[J].International Review of Cytology,2000(200):1~46.
    [6]Mendoza-Soto AB,Naya L,Leija A,et al.Responses of symbiotic nitrogen fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs [J].Frontiers in Plant Science,2015(6):587.
    [7]Ndao AS,Konté A,Biaye M,et al.Analysis of Chlorophyll Fluorescence Spectra in Some Tropical Plants [J].Journal of Fluorescence,2005,15(2):123~129.
    [8]?gren E.Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components [J].Planta,1991(184):538~544.
    [9]Rout GR,Samantaray S,Das P.Aluminum toxicity in plants:A review [J].Agronomic,2001(21):3~21.
    [10]?imonoviová M,Tamás L,Huttová J,et al.Effect of aluminium on oxidative stress related enzymes activities in barley roots [J].Biologia Plantarum,2004,48(2):261~266.
    [11]Zhang HM,Zhang SS,Meng QM,et al.Effects of Aluminum on Nucleoli in root tip cells,root growth and the antioxidant defense system in Vicia faba L.[J].ACTA BIOLOGICA CRACOVIENSIA Series Botanica,2009,51(2):99~106.
    [12]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14~18,30.
    [13]高吉喜,曹洪法.马尾松苗体内铝离子存在方式、形态和分布[J].环境科学,1992,13(6):69~72.
    [14]苟本富.铝胁迫对蚕豆幼苗生理的影响[J].安徽农业科学,2008,36(16):6643~6645,6668.
    [15]蒋桂芳.铝胁迫对蚕豆幼苗生理的影响 [J].山西农业科学,2012,40(1):21~24,27.
    [16]理挪,王培,马志慧等.酸铝复合胁迫对杉木苗叶绿素荧光的影响 [J].福建农林大学学报( 自然科学版),2018,47(6):686~690.
    [17]李庆逵.中国红壤[M].北京:北京科学出版社,1983.
    [18]林咸永,王建林.植物对铝毒胁迫的适应机制[M]//张福锁.植物营养的生态生理学和遗传学.北京:中国科学技术出版社,1993:248~290.
    [19]刘强,胡萃,柳正葳,等.铝胁迫对烟草叶片光能利用、光保护系统及活性氧代谢的影响 [J].华北农学报,2017,32(1):118~124.
    [20]钱莲文,龚吉蕊,孙境蔚.铝胁迫对常绿杨幼苗光系统Ⅱ的影响 [J].北京师范大学学报(自然科学版),2015,51(3):261~266.
    [21]钱莲文,吴文杰,孙境蔚,等.铝胁迫对常绿杨生长及叶肉细胞超微结构的影响 [J].林业科学,2016,52(11):40~46.
    [22]石贵玉.铝对水稻幼苗生长和生理的影响[J].广西植物,2004,24(1):77~80.
    [23]束良佐,杨红梅.钙对铝胁迫下玉米幼苗膜保护酶及其它一些生理指标的影响[J].阜阳师范学院学报(自然科学版),2001,18(1):20~22.
    [24]王志颖,刘鹏,李锦山,等.铝胁迫对油菜生长及叶绿素荧光参数、代谢酶的影响[J].浙江师范大学学报(自然科学版) ,2010,33(4):452~458.
    [25]闫世才,毛学文,杨勇理.铝对豌豆生长的影响[J].生态学杂志,2003,22(2):80~81.
    [26]应小芳,刘鹏,徐根娣.土壤中的铝及其植物效应的研究进展[J].生态环境,2003,12(2):237~239.
    [27]赵其国.红壤物质循环及其调控[M].北京:科学出版社,2002.
    [28]郑阳霞,贾松涛,赵英鹏,等.铝胁迫对西瓜幼苗光合及叶绿素荧光特性的影响[J].华北农学报,2015,30(4) :150~156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700