金属表面植酸转化膜研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Overview on Study of Phytic Acid Conversion Coatings on Metal Surface
  • 作者:卢勇 ; 冯辉霞 ; 张晓芳
  • 英文作者:LU Yong;FENG Huixia;ZHANG Xiaofang;School of Petrochemical Engineering,Lanzhou University of Technology;Research Institute of Lanzhou Petrochemical Corporation of Petro China;
  • 关键词:金属 ; 植酸 ; 转化膜 ; 防腐
  • 英文关键词:metal;;phytic acid;;conversion coating;;anti-corrosion
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:兰州理工大学石油化工学院;中国石油兰州石化公司研究院;
  • 出版日期:2019-05-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家科技部“科技人员服务企业行动项目”(2009GJG10041);; 甘肃省高校基本科研业务费(1105ZTC136)~~
  • 语种:中文;
  • 页:CLDB201909006
  • 页数:7
  • CN:09
  • ISSN:50-1078/TB
  • 分类号:31-37
摘要
化学转化膜技术是金属物件表面处理中应用较为广泛的一项技术,可使金属物件得到较好的防护,可用于金属防腐、耐磨、减摩、涂装底层,其应用涉及汽车制造、家电以及五金构件加工等诸多行业。化学转化膜技术作为最常用的金属表面预处理技术,因工艺简单、效果显著、沉淀均匀、成本低且膜的厚度易控制等优势而受到越来越多的关注。传统的铬酸盐和磷酸盐转化处理方法会对环境产生持久性危害,因而已逐步被绿色环保的方法取代。目前,金属表面绿色前处理技术的开发和应用已成为该领域十分重要的研究方向。经过十几年的努力,研究人员相继开发了各类环境友好型转化膜。本文针对无铬化学转化膜,从锆盐、钛盐、钒盐、钼酸盐、锡酸盐、铌盐和稀土元素类转化膜等的制备工艺、防腐蚀效果等方面阐述了无铬化学转化膜的研究进展。虽然,无铬转化新技术有一定的实践应用,但作为防腐蚀技术而言,单一使用该技术的效果并不理想,还需要与其他方法相结合并加以改进。本文重点分析了植酸转化膜的沉积机理、影响因素及改进技术发展。植酸是从植物中提取的无毒天然有机大分子,分子中含有能够与金属离子发生螯合作用的六个磷酸基,每个磷酸基中又有两个羟基和四个氧原子,可在较宽的pH值范围内与大多数二价及以上的金属离子螯合形成稳定的配合物。植酸作为金属表面化学转化膜成膜材料在金属腐蚀与防护领域的应用越来越广泛。大量研究结果表明,金属在植酸处理液中通过电化学反应,使金属表面的金属离子与植酸分子发生螯合作用,沉积形成植酸化学转化膜。植酸化学转化膜的研究涉及多种金属如镁合金、钢、铁等。本文通过分析植酸转化膜的制备过程,总结了影响转化膜表面形貌和耐蚀性的三个主要因素,即植酸的浓度、处理液的pH值和处理时间;同时还归纳了单一植酸转化膜存在的不足,如膜层表面存在微小裂纹、膜层较薄、耐蚀时间较短、耐腐蚀效果不佳等。研究表明,提高植酸转化膜保护效率的途径有碱预处理、热后处理及与金属离子协同等改进技术,以及同其他转化膜复合、同其他物质复合等复合方法。此外,还展望了植酸在金属表面转化处理的发展前景。
        Chemical conversion coating technology is widely used in metal surface treatment,and exhibit favorable protective effect,which holds extensive applications in metal anti-corrosion,wear resistance,antifriction,coating bottom layer. Its application involves automobile manufacturing,household appliances and hardware processing and many other industries. As the most commonly used pretreatment technology,chemical conversion coating technology has attracted more and more attention because of its advantages such as simple treatment process,remarkable effect,uniform precipitation,low processing cost,as well as the easy control of the coating thickness etc.Conventional approaches involving conversion of chromate and phosphate may produce lasting harm to the environment,and have been gradually replaced by the environmental-friendly approaches. Currently,the development and application of green metal surface pretreatment technology has become a very important research direction in this field. After more than ten years of effort,researchers have developed diverse kinds of environment-friendly conversion coating. In this papers,we introduce the progress of a variety of chromium-free and environment-friendly conversion coatings,such as zirconium,titanium,vanadium,molybdate,stannic acid,niobium and rare earth conversion coatings,in view of their preparation process and corrosion resistance effects. Although the chromium-free conversion coatings technology has been applied practically,and it fail to achieve satisfactory anti-corrosion effect,therefore a composite approach is needed for further improving the anti-corrosion efficiency.In this paper,we focus on the deposition mechanism,influencing factors and technical development of phytic acid conversion coating. Phytic acid is a non-toxic natural organic macro-molecules extracted from plants. It contains six phosphate groups that can chelate with metal ions. Each phosphate group bear two hydroxyl groups and four oxygen atoms,which are capable of forming stable complexes with most of the bivalent and above valence metal ions by chelating in a wide range of p H value. Phytic acid has been widely used as film-former for constructing chemical conversion coating in the field of metal anti-corrosion and protection. Numerous research results have demonstrated that metal ions on the metal surface were chelated with phytic acid molecules by electrochemical reaction in phytic acid treatment solution,and the phytic acid chemical conversion coating is formed. Phytic acid can be used in chemical coating processing for magnesium alloy,steel,iron and other metal. By analyzed the preparation process of phytic acid conversion coating,we also elaborate the three importment influence factors which affect the surface morphology and corrosion resistance of the conversion coating,including the concentration of phytic acid,p H of the solution and processing time. Meanwhile,we summarize the defects after the treatment of the metal substrate with single phytic acid,such as the micro-cracks on metal surface,thin film,short corrosion resistance duration,low anti-corrosion efficiency. It has been proved that the protection performance of phytic acid conversion coating can be enhanced by alkali pretreatment,thermal post-treatment,coordination with metal ions,as well as combination with other conversion films and other materials. Finally,we point out the development prospect of phytic acid in metal surface treatment.
引文
1 Khun N W,Frankel G S.Corrosion Science,2015,71,277.
    2 Ramezanzadeh B,Attar M M.Surface & Coatings Technology,2011,205(19),4649.
    3 Yang K H,Ger M D,Hwu W H,et al.Materials Chemistry & Physics,2007,101(2),480.
    4 Gao H F,Tan H Q,Li J,et al.Surface Engineering,2012,28(5),387.
    5 Zhang S,Li Q,Chen B,et al.Electrochimica Acta,2010,55(3),870.
    6 Baratidraband G H,Liofkhazrei M.Surface Review & Letters,2017,3(24),17300031.
    7 Ramezanzadeh B,Akbarian M,Ramezanzadeh M,et al.Journal of the Electrochemical Society,2017,164(6),C224.
    8 Hosseini R M,Sarabi A A,Mohammadloo H E,et al.Surface & Coa-tings Technology,2014,258,437.
    9 Cerezo J,Vandendael I,Posner R,et al.Surface & Coatings Technology,2013,236(24),284.
    10 Cerezo J,Vandendael I,Posner R,et al.Applied Surface Science,2016,366,339.
    11 Cerezo J,Posner R,Vandendael I,et al.Materials & Corrosion,2016,67(4),361.
    12 Winiarski J,Masalski J,Szczygie? B.Surface & Coatings Technology,2013,236(24),252.
    13 Motamedi M,Attar M M.RSC Advances,2016,6(50),44732.
    14 Ardelean H,Frateur I,Marcus P.Corrosion Science,2008,50(7),1907.
    15 Wang C,Jiang F,Wang F.Corrosion Science,2004,46(1),75.
    16 Yang L,Li J,Yu X,et al.Applied Surface Science,2008,255(5),2338.
    17 Li L L,Yang Y Y,Cui X F,et al.China Surface Engineering,2013,26(1),51(in Chinese).李玲莉,杨雨云,崔秀芳,等.中国表面工程,2013,26(1),51.
    18 Zhao D Z,Zhang D F,Liu Y P,et al.Rare Metal Materials and Engineering,2017,46(2),289.
    19 Zou M H,Li L J,Lei J L,et al.Journal of The Chinese Rare Earth Society,2009,27(3),375(in Chinese).邹茂华,李凌杰,雷惊雷,等.中国稀土学报,2009,27(3),375.
    20 Han B J,Gu D D,Yang Y,et al.International Journal of Electrochemical Science,2017,12(1),374.
    21 Yang L H,Li J Q,Yu X,et al.The Chinese Journal of Nonferrous Metals,2008,18(7),1211(in Chinese).杨黎晖,李峻青,于湘,等.中国有色金属学报,2008,18(7),1211.
    22 Liu X,Zhang T,Shou Y,et al.Corrosion Science,2010,52(3),892.
    23 Gnedenkov A S,Sinebryukhov S L,Mashtalyar D V,et al.Corrosion Science,2016,102,269.
    24 Scholes F H,Soste C,Hughes A E,et al.Applied Surface Science,2006,253(4),1770.
    25 Montemor M F,Simoes A M,Ferreira M G S,et al.Applied Surface Science,2008,254,1806.
    26 Montemor M F,Simoes A M,Carmezib M J.Applied Surface Science,2007,253,6922.
    27 Johansen H D,Brett C M A,Motheo A J.Corrosion Science,2012,63,342.
    28 Zand R Z,Verbeken K,Adriaens A.Progress in Organic Coatings,2012,75(4),463.
    29 Kong G,Liu L,Lu J,et al.Corrosion Science,2011,53(4),1621.
    30 Maga J A.Journal of Agricultural & Food Chemistry,1982,30(1),1.
    31 Cheryan M.CRC Critical Reviews in Food Technology,1980,13(4),297.
    32 Wang H,Zhou Y,Ma J,et al.Food Chemistry,2013,141(1),18.
    33 Hao C,Yin R H,Wan Z Y,et al.Corrosion Science,2008,50(12),3527.
    34 Odell B L,Savage J E.Proceedings of the Society for Experimental Biology and Medicine,1960,103,304.
    35 El-Sayed A R,Harm U,Mangold K M,et al.Corrosion Science,2012,55(2),339.
    36 Li L,Zhang G,Su Z.Angewandte Chemie,2016,55(31),1.
    37 Ejima H,Richardson J J,Liang K,et al.Science,2013,341(6142),154.
    38 Shi H,Han E H,Liu F,et al.Applied Surface Science,2013,280(9),325.
    39 Cui X,Li Q,Li Y,et al.Applied Surface Science,2008,255(5),2098.
    40 Guo X,Du K,Gao Q,et al.Corrosion Science,2013,76(2),129.
    41 Chidiebere M A,Oguzie E E,Liu L,et al.Industrial & Engineering Chemistry Research,2014,53(18),7670.
    42 Antonijevic M M,Petrovic M B.International Journal of Electrochemical Science,2008,3(1),1.
    43 Chen J,Song Y,Shan D,et al.Corrosion Science,2013,74,130.
    44 马厚义,高翔.中国专利,201510332213.9,2015.
    45 Sammartano S,Crea F,De Stefano C,et al.Coordination Chemistry Reviews,2008,252(10),1108.
    46 Cui X,Li Y,Li Q,et,al.Materials Chemistry & Physics,2008,111(2),503.
    47 Ye C H,Zheng Y F,Wang S Q,et al.Applied Surface Science,2012,258(8),3420.
    48 Crea P,Robertis A D,Stefano C D,et al.Biophysical Chemistry,2006,124(1),18.
    49 Bohn T,Davidsson L,Walczyk T,et al.The American Journal of Clinical Nutrition,2004,79(3),418.
    50 Bauman A T,Chateauneuf G M,Boyd B R,et al.Tetrahedron Letters,1999,40(24),4489.
    51 Pan F,Yang X,Zhang D.Applied Surface Science,2009,255(20),8363.
    52 Gao L L,Zhang C H,Zhang M L,et al.Journal of Alloys and Compounds,2009,485,789.
    53 Hao Y S,Sani L A,Song L,et al.Journal of Chinese Society for Corrosion and Protection,2016,36(6),549(in Chinese).郝永胜,Sani Luqman Abdullahi,宋立新,等.中国腐蚀与防护学报,2016,36(6),549.
    54 Chen Y,Zhao S,Liu B,et al.ACS Applied Materials & Interfaces,2014,6(22),19531.
    55 Chen Y,Wan G,Wang J,et al.Corrosion Science,2013,75(16),280.
    56 Zhang R,Cai S,Xu G,et al.Applied Surface Science,2014,313,896.
    57 Gao X,Li W,Yan R,et al.Surface & Coatings Technology,2017,325,248.
    58 Yan R,Gao X,He W,et al.RSC Advances,2017,7(65),41152.
    59 Gupta R K,Mensah-Darkwa K,et al.Journal of Materials Science & Technology,2013,29(2),180.
    60 Liu J,Guo Y,Huang W,et al.Protection of Metals & Physical Chemistry of Surfaces,2012,48(2),233.
    61 Gao H F,Htan Q,Li J,et al.Surface Engineering,2012,28(5),387.
    62 Niu L Q,Guo R G.Materials Protection,2016,49(12),30.
    63 Mohammadloo H E,Sarabi A A.Progress in Organic Coatings,2016,101,391.
    64 Lin B L.Surface Technology,2016,45(3),115.
    65 Zhang M,Cai S,Zhang F,et al.Journal of Materials Science Materials in Medicine,2017,28(6),82.
    66 Zhang M,Cai S,Shen S,et al.Journal of Alloys & Compounds,2016,658,649.
    67 Chen Y,Zhang X,Zhao S,et al.Journal of Materials Chemistry B,2017,5,1.
    68 Gupta R K,Mensah-Darkwa K,Sankar J,et al.Transactions of Nonferrous Metals Society of China,2013,23(5),1237.
    69 Pak S,Jiang Z H,Yao Z P,et al.Surface & Coatings Technology,2017,325,579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700