MCM-41表面改性及MCM-41/环氧树脂复合材料陷阱特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MCM-41 Surface Modification and Trap Characteristic of MCM-41/EP Composites
  • 作者:罗潘 ; 徐曼 ; 王绍辉 ; 李鹏 ; 张艺涵 ; 徐阳 ; 谢大荣
  • 英文作者:Luo Pan;Xu Man;Wang Shaohui;Li Peng;Zhang Yihan;Xu Yang;Xie Darong;State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University;State Grid Henan Economic Research Institute;Northwest Electric Power Design Institute Co.Ltd China Power Engineering Consulting Group;
  • 关键词:MCM-41 ; 表面改性 ; MCM-41/环氧树脂 ; 玻璃化转变温度 ; 陷阱特性
  • 英文关键词:MCM-41;;surface modification;;MCM-41/EP;;glass transition temperature;;trap characteristic
  • 中文刊名:DGJS
  • 英文刊名:Transactions of China Electrotechnical Society
  • 机构:西安交通大学电力设备电气绝缘国家重点实验室;国网河南省电力公司经济技术研究院;中国电力工程顾问集团西北电力设计院有限公司;
  • 出版日期:2018-05-25
  • 出版单位:电工技术学报
  • 年:2018
  • 期:v.33
  • 基金:国家自然科学基金青年基金资助项目(51207120)
  • 语种:中文;
  • 页:DGJS201810009
  • 页数:8
  • CN:10
  • ISSN:11-2188/TM
  • 分类号:83-90
摘要
在复合材料MCM-41/环氧树脂的制备中,采用硅烷偶联剂对MCM-41颗粒进行表面改性,同时采用热失重、傅里叶红外光谱、小角X衍射、氮气吸附-脱附等手段对表面修饰前后的MCM-41颗粒表面结构进行表征。随后利用原位聚合的方法制备表面改性后不同MCM-41含量的MCM-41/环氧树脂复合材料。在复合材料性能表征中,首先利用动态热机械分析法对其玻璃化转变温度的变化趋势进行研究,实验结果显示随着MCM-41添加量增加,复合材料玻璃化转变温度呈先增加后降低的变化趋势;其次,采用热刺激去极化电流对复合材料中内部的陷阱分布变化进行研究,结果显示随着MCM-41的添加,复合材料内部陷阱深度变浅,陷阱电荷总量降低。实验结果说明在偶联剂的作用下MCM-41能够与环氧树脂基体形成有效的化学键连接,提高复合材料的动态热机械特性,减少复合材料内部的物理或者化学缺陷。
        In this paper, the MCM-41 was surface modified by the silane coupling agent KH550 before the preparation of MCM-41/EP nano-composite. Moreover, the thermogravimetric analysis, Fourier transform infrared spectroscopy, small angle X-ray diffraction and N2 adsorption-desorption isotherms were used to characterize the surface structure of MCM-41 before and after surface modification. The in-situ polymerization was employed to prepare the MCM-41/EP Nano-composite with different percentages of MCM-41. Then, the glass transition temperature of MCM-41/EP composite was measured by using the dynamic mechanical analyzer. The results showed that the glass transition temperature of MCM-41/EP composite increased with the increase of MCM-41 percentage. Finally, the trap parameter of the composite was measured by the thermally stimulated depolarization current. It was shown that, with the increase of MCM-41, the trap depth became shallow, and the quantity of trapped charge decreased significantly.
引文
[1]张代东,吴润.材料科学基础[M].北京:北京大学出版社,2011.
    [2]巫松桢,谢大荣.电气绝缘材料科学与工程[M].西安:西安交通大学出版社,1996.
    [3]张明艳,王晨,吴淑龙,等.碳纳米管、蒙脱土共掺杂环氧树脂复合材料介电性能研究[J].电工技术学报,2016,31(10):151-158.Zhang Mingyan,Wang Chen,Wu Shulong,et al.Research on dielectric properties of epoxy resin composites doped with carbon nanotubes and montmorillonite[J].Transactions of China Electrotechnical Society,2016,31(10):151-158.
    [4]王旗,李喆,尹毅,等.微/纳米氧化铝/环氧树脂复合材料抑制电树枝生长能力的研究[J].电工技术学报,2015,30(6):255-260.Wang Qi,Li Zhe,Yin Yi,et al.The effect of micro and nano alumina on the ability of impedance on the electrical tree of epoxy resin[J].Transactions of China Electrotechnical Society,2015,30(6):255-260.
    [5]Li S T,Yin G L,Bai S N,et al.A new potential barrier model in epoxy resin nanodielectrics[J].IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(5):1535-1543.
    [6]Lewis T J.Interfaces are the dominant feature of dielectrics at the nanometric level[J].IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):739-753.
    [7]Tanaka T,Kozako M,Fuse N,et al.Proposal of a multi-core model for polymer nanocomposite dielectrics[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-681.
    [8]Tanaka T,Montanari G C,Mulhaupt R.Polymer nanocomposites as dielectrics and electrical insulationperspectives for processing technologies,material characterization and future applications[J].IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):763-784.
    [9]Lau K,Vaughan A,Chen G.Nanodielectrics:opportunities and challenges[J].IEEE Electrical Insulation Magazine,2015,31(4):45-54.
    [10]Tanaka T,Imai T.Advances in nanodielectric materials over the past 50 years[J].IEEE Electrical Insulation Magazine,2013,29(1):10-23.
    [11]Cherney E A.Nanodielectrics applications-today and tomorrow[J].IEEE Electrical Insulation Magazine,2013,29(6):59-65.
    [12]赵东元,万颍,周午纵.有序介孔分子筛材料[M].北京:高等教育出版社,2013.
    [13]焦剑,张佳赟.环氧树脂/介孔Si O2复合材料的结构与性能[J].中国塑料,2008,22(9):57-62.Jiao Jian,Zhang Jiayun.Textural properties of epoxy resin/mesostructured silica mesocomposites[J].China Plastics,2008,22(9):57-62.
    [14]王娜,张静,戴彩云,等.环氧树脂/纳米介孔分子筛复合材料的制备及性能研究[J].工程塑料应用,2006,34(5):15-18.Wang Na,Zhang Jing,Dai Caiyun,et al.Preparation and property of epoxy resin nano-sized mesoporous molecular sieve nanocomposite[J].Composite Science and Technology,2006,34(5):15-18.
    [15]张莉莉,黄思共,李湘祁.介孔MCM-48粉体对环氧树脂性能影响[J].热固性树脂,2009,24(6):41-43.Zhang Lili,Huang Sigong,Li Xiangqi.Effect of mesoporous MCM-48 on mechanical and dielectric properties of epoxy resin[J].Thermosetting Resin,2009,24(6):41-43.
    [16]曹均助,苏跃增,周持兴.介孔材料SBA-15/环氧树脂复合材料的制备和固化动力学[J].高分子材料科学与工程,2011,27(11):133-136.Cao Junzhu,Su Yuezeng,Zhou Chixing.Synthesis of mesoporous material SBA-15/Epoxy composite and cure Kinetics[J].Polymer Materials Science and Engineering,2011,27(11):133-136.
    [17]Lin J,Wang X.Preparation,microstructure,and properties of novel low-κbrominated epoxy/mesoporous silica composites[J].European Polymer Journal,2008,44(5):1414-1427.
    [18]Han B,Wang X,Sun Z,et al.Space charge suppression induced by deep traps in polyethylene/zeolite nanocomposite[J].Applied Physics Letters,2013,102(1):012902-012904.
    [19]Friedman H L.Kinetics of thermal degradation of charforming plastics from thermogravimetry application to a phenolic plastic[J].Journal of Polymer Science Part C:Polymer Symposia,1964,6(1):183-195.
    [20]马晶.SBA-15(16)介孔分子筛的功能化修饰及其在多项催化中的应用[D].哈尔滨:哈尔滨工业大学,2011.
    [21]曹均助.环氧树脂和介孔SBA-15复合材料制备和固化动力学的研究[D].上海:上海交通大学,2011.
    [22]Baerlocher C,Mccusker L B.Practical aspects power diffraction data-analysis[J].Studies in Surface Science&Catalysis,1994,85:391-428.
    [23]Yuanxin Zhou,Farhana Pervi,Lance Lewis.Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy[J].Materials Science and Engineering:A,2007,452:657-664.
    [24]Tao Xie,Ingrid A.Rousseau,Facile tailoring of thermal transition temperatures of epoxy shape memory polymers[J].Polymer,2009,50(8):1852-1856.
    [25]Starr F W,Schr?der T B,Glotzer S C.Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultra-thin films[J].Physical Review E,2001,64(2):021802(1-5).
    [26]王力衡.介质的热刺激电流理论及其应用[M].北京:科学出版社,1988.
    [27]田付强,卜文斌,杨春,等.TSC测量技术中存在的若干问题的探讨[J].电工技术学报,2010,25(11):21-28.Tian Fuqiang,Bu Wenbin,Yang Chun,et al.Investigation of existing problems in thermally stimulated current measurement technique[J].Transactions of China Electrotechnical Society,2010,25(11):21-28.
    [28]王暄,赵晓旭,雷清泉,等.复合热激电流曲线陷阱参数的计算[J].电工技术学报,2000,15(4):84-87.Wang Xuan,Zhao Xiaoxu,Lei Qingquan,et al.Calculation of the trapping parameters of composite thermally stimulated current curve[J].Transactions of China Electrotechnical Society,2000,15(4):84-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700