电流-时间曲线法测定鱼露中的苯乙胺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of Phenethylamine in Fish Sauce by Amperometric Current-Time Curve Method
  • 作者:赵晓娟 ; 周婵媛 ; 张敏 ; 陈海光 ; 白卫东
  • 英文作者:ZHAO Xiaojuan;ZHOU Chanyuan;ZHANG Min;CHEN Haiguang;BAI Weidong;College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering;Guangzhou Key Laboratory of Traditional Cantonese Food Processing and Safety Control;
  • 关键词:电流-时间曲线法 ; 积分脉冲安培法 ; 苯乙胺 ; 纳米金 ; 鱼露
  • 英文关键词:amperometric I-t curve;;integrated pulsed amperometric detection;;phenethylamine;;gold nanoparticles;;fish sauce
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:仲恺农业工程学院轻工食品学院;广州市广式传统食品加工与安全控制重点实验室;
  • 出版日期:2018-09-20 22:31
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.601
  • 基金:广东省科技计划项目(2016A040403116);; 广州市科技计划项目(201604020021;201604020050)
  • 语种:中文;
  • 页:SPKX201912048
  • 页数:5
  • CN:12
  • ISSN:11-2206/TS
  • 分类号:348-352
摘要
利用积分脉冲安培法和电流-时间(I-t)曲线法测定苯乙胺,对两种方法的测定条件分别进行优化,并比较两种方法的测定效果。结果表明:采用纳米金修饰金电极(AuNPs/AuE),在初始电位为0.1 V时,运用I-t曲线法测定苯乙胺具有良好的选择性和较高的灵敏度。苯乙胺的响应电流差值与苯乙胺浓度在4.13×10~(-8)~4.72×10~(-6) mol/L范围内呈良好的线性关系,检出限为1.4×10~(-8) mol/L。用该法测定鱼露样品中苯乙胺的加标回收率在90.0%~110.8%之间。该法检测速度快、成本低、选择性好,适用于水产品及其制品中苯乙胺的测定。
        Phenethylamine was determined by the integrated pulsed amperometric(IPA) method and the amperometric current-time curve method. The detection conditions of the two methods were optimized, and the obtained results were compared with each other. The results showed that the amperometric I-t curve method had better selectivity and higher sensitivity to phenethylamine based on gold nanoparticles(AuNPs) modified gold electrode(AuE) at an initial potential of 0.1 V. The difference of response current had a good linear relationship with the concentration of phenethylamine in the range of 4.13 × 10-8–4.72 × 10-6 mol/L. The limit of detection(LOD) was 1.4 × 10-8 mol/L. The recovery of phenethylamine from spiked fish sauce was in the range of 90.0%–110.8%. This method was rapid, inexpensive, highly selective, and suitable for determination of phenethylamine in aquatic products.
引文
[1]范春艳,孔维府,潘秋红,等.葡萄酒中8种生物胺的RP-HPLC检测方法的研究[J].中国酿造,2010, 29(11):168-171.DOI:10.3969/j.issn.0254-5071.2010.11.050.
    [2]孔维府,范春燕,张翛翰,等.论葡萄酒中生物胺生成的影响因素及其检测方法[J].中国酿造,2010.,29(6):13-16.DOI:10.3969/j.issn.0254-5071.2010.06.005.
    [3] ONAL A.A review:current analytical methods for the determination of biogenic amines in foods[J]. Food Chemistry, 2007, 103(4):1475-1486.DOI:10.1016/j.foodchem.2006.08.028.
    [4] PIASTA A M, JASTRZEBSKA A, KRZEMINSKI M P, et al.New procedure of selected biogenic amines determination in wine samples by HPLC[J].Analytica Chimica Acta,2014,834(1):58-66.DOI:10.1016/j.aca.2014.05.028.
    [5] GONG X,QI N,WANG X, et al. Ultra-performance convergence chromatography(UPC2)method for the analysis of biogenic amines in fermented foods[J]. Food Chemistry, 2014, 162(11):172-175.DOI:10.1016/j.foodchem.2014.04.063.
    [6] ONAL A, TEKKELI S E, ONAL C. A review of the liquid chromatographic methods for the determination of biogenic amines in foods[J].Food Chemistry, 2013, 138(1):509-515.DOI:10.1016/j.foodchem.2012.10.056.
    [7]陆永梅,董明盛,吕欣,等.高效液相色谱法测定黄酒中生物胺的含量[J].食品科学,2006, 27(1):196-199. DOI:10.3321/j.issn:1002-6630.2006.01.046.
    [8]曹利瑞,朱松,俞剑燊,等.黄酒中9种生物胺的高效液相色谱分析法[J].食品科学,2016,37(4):103-107.DOI:10.7506/spkx1002-6630-201604019.
    [9]王春利,赵晓娟,王英姿.白酒中8种生物胺的高效液相色谱分析法[J].酿酒科技,2017(11):113-116.DOI:10.13746/j.njkj.2017171.
    [10] ROMANO A, KLEBANOWSKI H, LA GUERCHE S, et al.Determination of biogenic amines in wine by thin-layer chromatography/densitometry[J]. Food Chemistry, 2012, 135(3):1392-1396.DOI:10.1016/j.foodchem.2012.06.022.
    [11] HUANG J, GAN N,LV F,et al.Environmentally friendly solidphase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples[J].Journal of Separation Science,2016,39(22):4384-4390.DOI:10.1002/jssc.201600893.
    [12] JASTRZEBSKA A, PIASTA A, SZLYK E. Application of ion chromatography for the determination of biogenic amines in food samples[J].Journal of Analytical Chemistry,2015,70(9):1131-1138.DOI:10.1134/S1061934815070035.
    [13] AN D, CHEN Z Q,ZHENG J C,et al.Determination of biogenic amines in oysters by capillary electrophoresis coupled withelectrochemiluminescence[J]. Food Chemistry, 2015,168:1-6.DOI:10.1016/j.foodchem.2014.07.019.
    [14] CORTACERO-RAMIREZ S,ARRAEZ-ROMAN D, SEGURACARRETERO A,et al.Determination of biogenic amines in beers and brewing-process samples by capillary electrophoresis coupled to laserinduced fluorescence detection[J]. Food Chemistry, 2007, 100(1):383-389.DOI:10.1016/j.foodchem.2005.09.037.
    [15] LI W,PAN Y, LIU Y, et al. Simultaneous determination of eight typical biogenic amines by CZE with capacitively coupled contactless conductivity detection[J]. Chromatographia,2014,77(3/4):287-292.DOI:10.1007/s10337-013-2595-3.
    [16]钱勇强,沈俊,炳安冬,等.毛细管电泳-电化学发光联用检测鱼露中苯乙胺[J].中国食品学报,2013, 13(2):165-170. DOI:10.16429/j.1009-7848.2013.02.008.
    [17] APETREI I M, APETREI C. The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products[J]. Journal of Food Engineering, 2015, 149:1-8.DOI:10.1016/j.jfoodeng.2014.09.036.
    [18] APETREI I M,APETREI C. Amperometric biosensor based on diamine oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon electrode for histamine detection[J]. Sensors,2016, 16(4):422-436.DOI:10.3390/s16040422.
    [19] SANCHEZ-PANIAGUA L M,REDONDO-GOMEZ E,LOPEZ-RUIZ B.Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples[J].Talanta, 2017,175:209-216.DOI:10.1016/j.talanta.2017.07.033.
    [20] DONG X, YANG J, LUO L, et al. Portable amperometric immunosensor for histamine detection using Prussian bluechitosan-gold nanoparticle nanocomposite films[J].Biosensors and Bioelectronics,2017,98:305-309.DOI:10.1016/j.bios.2017.07.014.
    [21]唐晗,王晓朋,吴中波,等.化学发光生物传感器检测食品中生物胺总量[J].食品安全质量检测学报,2014,5(5):1349-1356.
    [22]肖艳华,史妮,汪俊丽,等.基于普鲁士蓝/双胺氧化酶修饰的生物胺传感器[J].湖南师范大学自然科学学报,2014,37(1):37-41.
    [23]田鑫,刘红,李传勇,等.反相高效液相色谱法同时检测海产品中8种生物胺[J].食品安全质量检测学报,2017,8(4):1171-1178.
    [24]赵晓娟,李艺勤,白卫东,等.基于铜离子促水解反应高灵敏电化学检测鸡肉中头孢氨苄残留[J].分析化学,2016, 44(12):1927-1933.DOI:10.11895/j.issn.0253-3820.160260.
    [25] ZHAO X J,MAI Z B,KANG X H,et al.Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite[J].Biosensors and Bioelectronics, 2008,23(7):1032-1038.DOI:10.1016/j.bios.2007.10.012.
    [26] HUANG H Z,YUAN Q, YANG X R.Morphology study of goldchi tosan nanocomposites[J].Journal of Colloid and Interface Science,2005,282(1):26-31.DOI:10.1016/j.jcis.2004.08.063.
    [27]国家卫生和计划生育委员会,国家食品药品监督管理总局.食品中生物胺的测定:GB 5009.208-2016[S].北京:中国标准出版社,2016:4.
    [28]金根娣,彭生微,胡效亚.积分脉冲安培法测定苯乙胺[J].应用化学,2008,25(12):1404-1408.DOI:10.3969/j.issn.1000-0518.2008.12.006.
    [29] JHA N, RAMAPRABHU S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon[J]. Nanoscale, 2010, 2(5):806-810. DOI:10.1039/b9nr00336c.
    [30] MIN J Z,YAMASHITA K,TOYOOKA T,et al. Simultaneous and group determination methods for designated substances by HPLC with multi-channel electrochemical detection and their application to real samples[J]. Biomedical Chromatography, 2010, 24(12):1287-1299.DOI:10.1002/bmc.1439.
    [31] WANG L H,HUANG S J. Design of a flow-through voltammetric sensor based on an antimony-modified silver electrode for determining lithol rubine B in cosmetics[J].Journal of Automated Methods and Management in Chemistry, 2011, 2011(4):1-7.DOI:10.1155/2011/896978.
    [32]赵玲玲,杜冰,曹炜,等.超高效液相色谱-串联质谱法同时测定蜂蜜中8种生物胺[J].食品工业科技,2018, 39(4):228-234.DOI:10.13386/j.issn1002-0306.2018.04.042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700