纳秒光纤激光诱导等离子体沉积铜的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on plasma deposition of copper induced by nanosecond fiber laser
  • 作者:杨凯 ; 秦中立 ; 艾骏 ; 刘建国 ; 曾晓雁
  • 英文作者:YANG Kai;QIN Zhongli;AI Jun;LIU Jianguo;ZENG Xiaoyan;Functional Laboratory of Laser and Terahertz Technology, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology;
  • 关键词:激光技术 ; 激光诱导等离子体沉积 ; 纳秒光纤激光 ; 铜沉积层 ; 铜图案
  • 英文关键词:laser technique;;laser-induced plasma deposition;;nanosecond fiber laser;;copper deposition layer;;copper pattern
  • 中文刊名:JGJS
  • 英文刊名:Laser Technology
  • 机构:华中科技大学武汉光电国家研究中心激光与太赫兹技术功能实验室;
  • 出版日期:2018-07-27 11:45
  • 出版单位:激光技术
  • 年:2019
  • 期:v.43;No.240
  • 基金:国家自然科学基金面上资助项目(51775209)
  • 语种:中文;
  • 页:JGJS201902018
  • 页数:5
  • CN:02
  • ISSN:51-1125/TN
  • 分类号:104-108
摘要
为了实现玻璃表面的金属化,运用激光诱导等离子体沉积技术,选用廉价易维护且波长为1064nm的红外纳秒光纤激光和T2铜靶材,在透明材料普通硅酸盐玻璃表面直接沉积出了金属铜,并对其进行了光学显微镜和扫描电镜表征。结果表明,在一定的激光能量密度范围内(沉积阈值能量密度12.50J/cm~2~激光器所能达到的最大能量密度27.13J/cm~2),随着激光能量密度的增加,沉积在玻璃表面的铜颗粒数量增加;而在激光能量密度一定(27.13J/cm~2)的条件下,若保持激光光斑的横向和纵向搭接率一致,当光斑搭接率不小于50%时,由于玻璃对激光的强烈吸收,导致铜沉积失败;当光斑搭接率在-20%~50%变化时,沉积在玻璃表面的铜颗粒数量呈现先增加后减小的变化趋势。激光诱导等离子体沉积技术是一种可实现透明衬底材料表面金属化的便捷技术。
        In order to achieve surface metallization on glass substrates, metallic copper was directly deposited on the surface of conventional transparent silicate glass by means of laser-induced plasma deposition technology with a T2 copper target and a cheap and easily-maintained 1064 nm wavelength infrared nanosecond fiber laser. Micro-morphology of the copper deposition layer was observed by an optical microscope and a scanning electron microscope. The results show that, in the range of laser energy density from 12.50 J/cm~2(deposition threshold) to 27.13 J/cm~2(the maximal fluence of the laser), the deposition amount of copper particles on the glass surface increases with the increase of laser fluence. Under the condition of constant laser fluence(e.g.,27.13 J/cm~2) and the same horizontal and vertical spot overlaps, copper deposition process fails if the spot overlap percentage is equal to or large than 50% bcause of the strong absorption of laser by glass. And if the overlap percentage ranges from-20% to 50%, deposition amount of copper particles has a tendency of increase firstly and then decrease. Laser-induced plasma deposition technology is a facile process to realize surface metallization on transparent substrate material.
引文
[1] YANG Y. Study on the key technology of the pulse laser induced forward transfer [D]. Guangzhou: Guangdong University of Technology, 2015: 1-3 (in Chinese).
    [2] LI H H, HUANG Zh G, YANG Q T, et al. High-viscosity silver paste deposited by laser induced forward transfer [J]. Laser & Infre-red, 2017, 47(8): 943-947 (in Chinese).
    [3] LUO F, LONG H, HU Sh L, et al. Preparation of metallic coating on surface of diamond particles by pulsed laser deposition [J]. Chinese Journal of Lasers, 2004, 31(10): 1203-1206 (in Chinese).
    [4] PENG X. Laser-induced electroless copper deposition on modified plastic surface [D]. Quanzhou: Huaqiao University, 2012: 5-9 (in Chinese).
    [5] SERNA M I, YOO S H, MORENO S, et al. Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control [J].ACS Nano, 2016, 10(6): 6054-6061.
    [6] HANADA Y, SUGIOKA K, MIYAMOTO I, et al. Color marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA) [J]. Journal of Physics, 2007, 59(1): 687-690.
    [7] NEUENSCHWANDER B, JAEGGI B, SCHMID M, et al. Surface structuring with ultra-short laser pulses: basics, limitations and needs for high through [J]. Physics Procedia, 2014, 56(8): 1047-1058.
    [8] Lü M, LIU J G, WANG S H, et al. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating [J]. Applied Surface Science, 2016, 366(5): 227-232.
    [9] HOU T J, AI J, LIU J G, et al. Selective preparation of metal copper layer on silicate glass by laser surface modification [J]. Laser Technology, 2018, 42(2): 176-180 (in Chinese).
    [10] LIU M, FU X, XU L, et al. Design of nanosecond pulse laser micromachining system based on PMAC[J]. Proceedings of the SPIE, 2012, 8418: 84180K.
    [11] YU J, HE Sh T, SONG H Y, et al. Metal nanostructured film gene-rated by femtosecond laser induced forward transfer [J]. Chinese Journal of Lasers, 2017, 44(1): 0102009(in Chinese).
    [12] CHEN D Sh. Interaction between polymer and laser (Ⅲ) manufacture of fine circuit on polyimide film by selective electroless plating using silver as seeding [D]. Shanghai: Shanghai Jiao Tong University, 2006: 15-20 (in Chinese).
    [13] CHENG Y, LU Y M, GUO Y L, et al. Development of function films prepared by pulsed laser deposition technology [J]. Laser & Optoelectronics Progress, 2015, 52(12): 120003(in Chinese).
    [14] CHEN J W. Study on direct writing conductive lines by laser induced forward transfer technology [D]. Wuhan: Huazhong University of Science and Technology, 2011: 13-19 (in Chinese).
    [15] LIU J G, CHEN C H, ZHENG J Sh, et al. CO2 laser-induced local deposition of silver from aqueous solution [J]. Chinese Journal of Applied Chemistry, 2004, 21(7): 713-716 (in Chinese).
    [16] ZHANG J, SUGIOKA K, MIDORIKAWA K. Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser [J]. Optics Letters, 1998, 23(18): 1486-1488.
    [17] HANADA Y, SUGIOKA K, MIYAMOTO I, et al. Double-pulse irradiation by laser-induced plasma-assisted ablation (LIPAA) and mechanisms study [J]. Applied Surface Science, 2005, 248(1/4): 276-280.
    [18] HOU T J. Selective preparation of conductive metal layer on glass by laser surface modification [D]. Wuhan: Huazhong University of Science and Technology, 2016: 24-28 (in Chinese).
    [19] TOOSI S F, MORADI S, KAMAL S, et al. Superhydrophobic laser ablated PTFE substrates [J]. Applied Surface Science, 2015, 349(17): 715-723.
    [20] CRIALES L E, OROZCO P F, MEDRANO A, et al. Effect of fluence and pulse overlapping on fabrication of microchannels in PMMA/PDMS via UV laser micromachining: modeling and experimentation [J]. Materials & Manufacturing Processes, 2015, 30(7): 890-901.
    [21] WU D J, HONG M H, HUANG S M, et al. Laser-induced diffusion for glass metallization [J]. Proceedings of the SPIE, 2003, 5063: 30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700