低转速下多弧离子镀制备的Mo-Ti-Al-N超晶格硬质涂层的微结构及背散射谱分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on Microstructure and Backscattering Spectroscopy of Superlattice Mo-Ti-Al-N Hard Coatings Prepared by Multi-arc Ion Plating at Low Rotation Speed
  • 作者:王泽松 ; 梁枫 ; 项燕雄 ; 李松权 ; 田灿鑫 ; 邹长伟
  • 英文作者:WANG Ze-song;LIANG Feng;XIANG Yan-xiong;LI Song-quan;TIAN Can-xin;ZOU Chang-wei;School of Physics and Technology, Lingnan Normal University;
  • 关键词:多弧离子镀 ; 纳米多层膜 ; Mo-Ti-Al-N超晶格涂层 ; 微结构 ; 调制周期 ; 背散射谱
  • 英文关键词:multi-arc ion plating;;nanomultilayer;;Mo-Ti-Al-N superlattice coatings;;microstructure;;modulation period;;backscattering spectroscopy
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:岭南师范学院物理科学与技术学院;
  • 出版日期:2019-04-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:广东省科技计划(对外合作)项目(2018A050506082);; 广东省自然科学基金(2018A030307027);; 岭南师范学院自然科学研究项目(LZL1809,1170916003)~~
  • 语种:中文;
  • 页:BMJS201904025
  • 页数:8
  • CN:04
  • ISSN:50-1083/TG
  • 分类号:174-181
摘要
目的研究低基片转速对纳米多层膜微结构和性能的影响。方法采用阴极多弧离子镀技术在单晶硅基片上沉积制备了MoTiAlN/MoN/Mo纳米复合结构涂层,借助X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、背散射谱(RBS)和纳米硬度计,分别对样品的物相、形貌、组分和硬度进行表征分析。结果 XRD显示不同转速下制备的涂层的物相结构主要为六角密排结构的Mo N和面心立方(Ti,Al)N,较高基片转速下涂层的结晶性较好。SEM和TEM图像证实,2 r/min基片转速下的目标涂层具有平均调制周期26 nm的Ti AlN/MoN超晶格结构,总厚度为1.15μm,且界面清晰。纳米显微硬度测试表明,低基片转速下,涂层硬度和杨氏模量分别达到(30±2)GPa和(500±30)GPa。结论不同能量的~7Li~(2+)离子卢瑟福背散射谱结合SIMNRA拟合程序,可定量评估该超晶格结构涂层的原子百分比、每个子层的物理厚度及调制周期,这为纳米多层膜的微结构表征提供了一种有效的分析手段。
        The work aims to study the impact of low substrate rotation speed on microstructure and physical properties of nanostructured multilayer. MoTiAlN/MoN/Mo composite coatings were deposited on silicon substrates by cathodic multi-arc ion plating, and the phase structure, morphology, component and nanohardness of coatings species were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy and nanohardness tester. XRD results indicated that the coatings deposited at various substrate rotation speeds comprised hcp-MoN and fcc-(Ti,Al)N phases and the crystallinity was better at higher substrate rotation speed. SEM and TEM images confirmed that the mean modulation period and total physical thickness of superlattice TiAlN/MoN coatings with a sharp interface deposited at 2 r/min were 26 nm and 1.15 μm, respectively and the interface was clear. The nanohardness and Young modulus were up to(30±2) GPa and(500±30) GPa, respectively. RBS along with SIMNRA program proves to be a good method to evaluate the atomic concentrations, physical thicknesses of individual sublayers as well as the modulation periods of superlattice coatings quantitatively and provide reliable characterization for nanomultilayers.
引文
[1]李戈扬,许俊华,顾明元.纳米多层膜的微结构与超硬效应[J].上海交通大学学报,2001,35(3):458-461.LI Ge-yang,XU Jun-hua,GU Ming-yuan.Microstructure and superhardness of multilayer films[J].Journal of Shanghai Jiaotong University,2001,35(3):458-461.
    [2]张山山,王锦标,苏永要.纳米多层膜的研究现状[J].材料导报,2014,28(11):147-154.ZHANG Shan-shan,WANG Jin-biao,SU Yong-yao.Current research status of nano-multilayer films[J].Materials review,2014,28(11):147-154.
    [3]BARNETT S A,SHINN M.Plastic and elastic properties of compositionally modulated thin films[J].Annual review of materials science,1994,24(1):481-511.
    [4]KNOTEK O,LOFFLER F,KRAMER G.Multicomponent and multilayer physically vapour deposited coatings for cutting tools[J].Surface&coatings technology,1992,54-55(1):241-248.
    [5]SUBRAMANIAN C,STRAFFORD K N.Review of multicomponent and multilayer coatings for tribological applications[J].Wear,1993,165(1):85-95.
    [6]BELOV D S,VOLKHONSKY A O,BLINKOV I V,et al.Multilayer nanostructured wear-resistant coatings with increased thermal stability,adapted to varying friction conditions[J].Proceedings of the international conference nanomaterials:Applications and properties,2013,2(2):02FNC10.
    [7]陈德军.TiN/AlN纳米多层膜的制备与性能研究[D].广州:广东工业大学,2007.CHEN De-jun.A study on preparation and mechanical property of Ti N/AlN nanomultilayers[D].Guangzhou:Guangdong University of Technology,2007.
    [8]张文勇,孙德恩,裴晨蕊,等.调制周期对Cr Al N/Zr N纳米多层膜韧性的影响[J].表面技术,2016,45(1):55-61.ZHANG Wen-yong,SUN De-en,PEI Chen-rui,et al.Effect of modulation period on toughness of CrAlN/ZrN Nanomultilayer films[J].Surface technology,2016,45(1):55-61.
    [9]YU D,WANG C,CHENG X,et al.Optimization of hybrid PVD process of TiAlN coatings by Taguchi method[J].Applied surface science,2008,255(5):1865-1869.
    [10]YOUSAF M I,PELENOVICH V O,YANG B,et al.Effect of bilayer period on structural and mechanical properties of nanocomposite TiAlN/MoN multilayer films synthesized by cathodic arc ion-plating[J].Surface&coatings technology,2015,282:94-102.
    [11]朱雪婷,孙勇,郭中正,等.射频磁控溅射沉积Al/Al2O3纳米多层膜的结构及性能[J].真空科学与技术学报,2013,33(5):477-482.ZHU Xue-ting,SUN Yong,GUO Zhong-zheng,et al.Microstructures and properties of magnetron sputtered Al/Al2O3 multilayers[J].Chinese journal of vacuum science and technology,2013,33(5):477-482.
    [12]KONG M,YUE J L,LI G Y.Research development of hard ceramic nano-multilayer films[J].Journal of inorganic materials,2010,25(2):113-119.
    [13]LEE D K,LEE S H,LEE J J.The structure and mechanical properties of multilayer TiN/(Ti0.5Al0.5)N coatings deposited by plasma enhanced chemical vapor deposition[J].Surface and coatings technology,2003,169:433-437.
    [14]HELMERSSON U,TODOROVA S,BARNETT S A,et al.Growth of single-crystal TiN/VN stained-layer superlattices with extremely high mechanical hardness[J].Journal of applied physics,1987,62(2):481-486.
    [15]刘超卓.分析薄膜厚度与成分的卢瑟福背散射分析[J].理化检验(物理分册),2010,46(7):436-440.LIU Chao-zhuo.Rutherford backscattering technique for analysing the thickness and composition of thin films[J].Physical testing and chemical analysis(part A:Physical testing),2010,46(7):436-440.
    [16]TAVARES C J,REBOUTA L,ALVES E,et al.Study of roughness in Ti0.4Al0.6N/Mo multilayer structures[J].Nuclear instruments and methods in physics research section B:Beam interactions with materials and atoms,2002,188(1-4):90-95.
    [17]TAVARES C J,REBOUTA L,RIVIERE J P,et al.Atomic environment and interfacial structural order of TiAlN/Mo multilayers[J].Surface and coatings technology,2004187:393-398.
    [18]CHU W K,MAYER J W,NICOLET M A.Backscattering spectrometry[M].New York:Academic Press,1978.
    [19]DISERENS M,PATSCHEIDER J,LEVY F.Improving the properties of titanium nitride by incorporation of silicon[J].Surface and coatings technology,1998,108-109:241-246.
    [20]ZHANG S H,WU W W,CHEN W L,et al.Structural optimisation and synthesis of multilayers and nanocomposite AlCrTiSiN coatings for excellent machinability[J]Surface and coatings technology,2015,277:23-29.
    [21]CHEN M H,CHEN W L,CAI F,et al.Structural evolution and electrochemical behaviors of multilayer Al-CrSi-N coatings[J].Surface and coatings technology,2016,296:33-39.
    [22]TRITREMMEL C,DANIE R,LECHTHALER M,et al.Influence of Al and Si content on structure and mechanical properties of arc evaporated Al-Cr-Si-N thin films[J].Thin solid films,2013,534:403-409.
    [23]刘丹,韩滨,闫少健,等.多弧离子镀制备TiN/TiBN纳米复合涂层的结构和性能[J].中国表面工程,2014,27(5):102-108.LIU Dan,HAN Bin,YAN Shao-jian,et al.Structure and mechanical properties of TiN/TiB nanocomposite coatings deposited by multi-arc plasma deposition[J].Chinese surface engineering,2014,27(5):102-108.
    [24]CHU X,BARNETT S A,WONG M S,et al.Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings[J].Surface and coatings technology,1993,57(1):13-18.
    [25]KIM S K,LE V V,VINH P V,et al.Effect of cathode arc current and bias voltage on the mechanical properties of CrAlSiN thin films[J].Surface and coatings technology,2008,202(22-23):5400-5404.
    [26]FUKUMOTO N,EZURA H,YAMAMOTO K,et al.Effects of bilayer thickness and post-deposition annealing on the mechanical and structural properties of(Ti,Cr,Al)N/(Al,Si)N multilayer coatings[J].Surface and coatings Technology,2009,203(10-11):1343-1348.
    [27]WANG Y Q,NASTASI M.Handbook of modern ion beam materials analysis[M].2nd edition.Warrendale:Materials Research Society Press,2009.
    [28]MAYER M.SIMNRA,a simulation program for the analysis of NRA,RBS and ERDA[C]//AIP conference proceedings.Seoul:IOP institute of physics publishing ltd,1999:541-544.
    [29]KOTAI E.Computer methods for analysis and simulation of RBS and ERDA spectra[J].Nuclear instruments and methods in physics research section B:Beam interactions with materials and atoms,1994,85(1):588-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700