工作记忆的认知神经机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cognitive and neural mechanisms underlying working memory
  • 作者:库逸轩
  • 英文作者:KU Yixuan;School of Psychology and Cognitive Science, East China Normal University;
  • 关键词:工作记忆 ; 额顶网络 ; 感觉参与假说 ; 多巴胺 ; 经颅磁刺激 ; 神经振荡
  • 英文关键词:working memory;;fronto-parietal loop;;sensory recruitment;;dopamine;;transcranial magnetic stimulation;;neural oscillation
  • 中文刊名:SLXU
  • 英文刊名:Acta Physiologica Sinica
  • 机构:华东师范大学心理与认知科学学院;
  • 出版日期:2019-01-23 10:39
  • 出版单位:生理学报
  • 年:2019
  • 期:v.71
  • 基金:supported by grants from the National Social Science Foundation of China (No. 17ZDA323);; the Major Program of Science and Technology Commission of Shanghai Municipality, China (No. 17JC1404100)
  • 语种:中文;
  • 页:SLXU201901018
  • 页数:13
  • CN:01
  • ISSN:31-1352/Q
  • 分类号:177-189
摘要
工作记忆是短时间维持和控制输入信息的能力,与各种认知功能密切相关。与长时记忆相比,工作记忆的容量和精度都极为有限。以往的研究对容量和精度的认知与计算模型等方面已经有较多的讨论,但关于哪种模型对行为的拟合效果最好、是否存在记忆物数量的上限等问题仍存在不同的观点。近年来,与工作记忆相关的脑区和神经机制研究取得了很多进展,但是在参与工作记忆的脑区、神经振荡和分子机制等多个方面,仍然存在激烈的争论。本文对上述的研究进展做了较全面的综述,尤其针对工作记忆的脑区机制提供了我们自己研究积累的证据。进一步阐明反映前馈信息的γ振荡和反馈信息的α/β振荡与感觉皮层和额顶网络信息传递过程的关系,可能对于揭示工作记忆的神经机制起到关键作用。今后深入研究工作记忆相关的分子机制,如多巴胺和血清素等神经递质系统在工作记忆中的作用,可能会推进我们对工作记忆认知神经机制的理解;加强工作记忆在精神分裂症、阿尔茨海默病等疾病诊断中的量化指标,为工作记忆的训练和增强提供潜在的应用价值。
        Working memory(WM) refers to the process of temporally maintaining and manipulating input information. WM is the global workspace of cognitive functions, however, with severely restricted capacity and precision. Previous cognitive and computational models discussed the methods of calculating capacity and precision of WM and the reason why they are so limited. It still remains debated which model is the best across all datasets, and whether there exists upper limits of items. Besides, sensory cortices and the frontal-parietal loop are suggested to represent WM memorandum. Yet recently, the sensory recruitment hypothesis that posits an important role of sensory cortices in WM is strongly argued. Meanwhile, whether the prefrontal cortex shows sustained activity or bursting γ oscillations is intensely debated as well. In the future, disentangling the contribution to WM of feedforward γ vs feedback α/β oscillations, and/or dopamine vs serotonin systems, is critical for understanding the neural mechanisms underlying WM. It will further do help to recognize the basis for the psychiatric(e.g. schizophrenia) or neurological(e.g. Alzheimer's disease) disorders, and potentially to develop effective training and intervening methods.
引文
1 Baddeley A.Working memory:theories,models,and controversies.Annu Rev Psychol 2012;63:1-29.
    2 Baddeley A.Working memory:looking back and looking forward.Nat Rev Neurosci 2003;4:829-839.
    3 Luck SJ,Vogel EK.Visual working memory capacity:from psychophysics and neurobiology to individual differences.Trends Cogn Sci 2013;17:391-400.
    4 Miller GA.The magical number seven,plus or minus two:some limits on our capacity for processing information.Psychol Rev 1956;63:81-97.
    5 Cowan N.The magical number 4 in short-term memory:a reconsideration of mental storage capacity.Behav Brain Sci2001;24:87-114;discussion 114-185.
    6 Engle RW,Tuholski SW,Laughlin JE,Conway ARA.Working memory,short-term memory,and general fluid intelligence:A latent-variable approach.J Exp Psychol Gen1999;128:309-331.
    7 Luck SJ,Vogel EK.The capacity of visual working memory for features and conjunctions.Nature 1997;390:279-281.
    8 Vogel EK,Machizawa MG.Neural activity predicts individual differences in visual working memory capacity.Nature 2004;428:748-751.
    9 Todd JJ,Marois R.Capacity limit of visual short-term memory in human posterior parietal cortex.Nature 2004;428:751-754.
    10 Wei Z,Wang XJ,Wang DH.From distributed resources to limited slots in multiple-item working memory:a spiking network model with normalization.J Neurosci 2012;32:11228-11240.
    11 Bays PM.Noise in neural populations accounts for errors in working memory.J Neurosci 2014;34:3632-3645.
    12 Mi Y,Katkov M,Tsodyks M.Synaptic correlates of working memory capacity.Neuron 2017;93:323-330.
    13 Constantinidis C,Funahashi S,Lee D,Murray JD,Qi XL,Wang M,Arnsten AFT.Persistent spiking activity underlies working memory.J Neurosci 2018;38:7020-7028.
    14 Lundqvist M,Herman P,Miller EK.Working memory:delay activity,yes!persistent activity?maybe not.J Neurosci2018;38:7013-7019.
    15 Goldman-Rakic PS.Working-memory dysfunction in schizophrenia.J Neuropsychiatry Clin Neurosci 1994;6:348-357.
    16 Baddeley AD,Bressi S,Sala Della S,Logie R,Spinnler H.The decline of working memory in Alzheimer’s disease.Alongitudinal study.Brain 1991;114(Pt 6):2521-2542.
    17 Hochreiter S,Schmidhuber J.Long short-term memory.Neural Comput 1997;9:1735-1780.
    18 LeCun Y,Bengio Y,Hinton G.Deep learning.Nature 2015;521:436-444.
    19 Santoro A,Faulkner R,Raposo D,Rae J,Chrzanowski M,Weber T,Wierstra D,Vinyals O,Pascanu R,Lillicrap T.Relational recurrent neural networks.arXiv 2018:1806.01822[cs.LG].
    20 Corkin S.What’s new with the amnesic patient H.M?Nat Rev Neurosci 2002;3:153-160.
    21 Dossani RH,Missios S,Nanda A.The legacy of henry molaison(1926-2008)and the impact of his bilateral mesial temporal lobe surgery on the study of human memory.World Neurosurg 2015;84:1127-1135.
    22 Atkinson RC,Shiffrin RM.Human memory:a proposed system and its control processes.In:Spence KW,Spence JT(Eds.).Psychology of Learning and Motivation.Academic Press,1968,89-195.
    23 Baddeley AD,Hitch G.Working memory.In:Bower GH(Ed.).The Psychology of Learning and Motivation.New York:Academic Press,1974,8:47-89.
    24 Baddeley A.The episodic buffer:a new component of working memory?Trends Cogn Sci 2000;4:417-423.
    25 Cowan N.Attention and Memory:An Integrated Framework.Oxford University Press,1998.
    26 Engle RW.Working memory capacity as executive attention.Curr Dir Psychol Sci 2002;11:19-23.
    27 Ericsson KA,Kintsch W.Long-term working memory.Psychol Rev 1995;102:211-245.
    28 Anderson JR.A simple theory of complex cognition.Am Psychol 1996;51:355-365.
    29 Laird JE,Newell A,Rosenbloom PS.SOAR:An architecture for general intelligence.Artif Intel 1987;33:1-64.
    30 Kieras DE,Meyer DE.An overview of the EPIC architecture for cognition and performance with application to human-computer interaction.Hum-Comput Interact 1997;12:391-438.
    31 Lovett MC,Daily LZ,Reder LM.A source activation theory of working memory:cross-task prediction of performance in ACT-R.Cogn Syst Res 2000;1:99-118.
    32 Baddeley A.Working memory.Science 1992;255:556-559.
    33 Kane MJ,Conway ARA,Miura TK,Colflesh GJH.Working memory,attention control,and the n-back task:A question of construct validity.J Exp Psychol Learn Mem Cogn 2007;33:615-622.
    34 Berch DB,Krikorian R,Huha EM.The Corsi block-tapping task:methodological and theoretical considerations.Brain Cogn 1998;38:317-338.
    35 Pashler H.Familiarity and visual change detection.Percept Psychophys 1988;44:369-378.
    36 Rouder JN,Morey RD,Morey CC,Cowan N.How to measure working memory capacity in the change detection paradigm.Psychon Bull Rev 2011;18:324-330.
    37 Bliss I,H?m?l?inen H.Different working memory capacity in normal young adults for visual and tactile letter recognition task.Scand J Psychol 2005;46:247-251.
    38 Katus T,Müller MM,Eimer M.Sustained maintenance of somatotopic information in brain regions recruited by tactile working memory.J Neurosci 2015;35:1390-1395.
    39 Cowan N,Saults JS,Blume CL.Central and peripheral components of working memory storage.J Exp Psychol Gen 2014;143:1806-1836.
    40 Conway ARA,Kane MJ,Bunting MF,Hambrick DZ,Wilhelm O,Engle RW.Working memory span tasks:Amethodological review and user’s guide.Psychon Bull Rev2005;12:769-786.
    41 Unsworth N,Engle RW.On the division of short-term and working memory:An examination of simple and complex span and their relation to higher order abilities.Psychol Bull 2007;133:1038-1066.
    42 Klingberg T.Training and plasticity of working memory.Trends Cogn Sci 2010;14:317-324.
    43 Shipstead Z,Redick TS,Engle RW.Is working memory training effective?Psychol Bull 2012;138:628-654.
    44 Ma WJ,Husain M,Bays PM.Changing concepts of working memory.Nat Neurosci 2014;17:347-356.
    45 Alvarez GA,Cavanagh P.The capacity of visual short-term memory is set both by visual information load and by number of objects.Psychol Sci 2004;15:106-111.
    46 Wilken P,Ma WJ.A detection theory account of change detection.J Vis 2004;4:1120-1135.
    47 Zhang W,Luck SJ.Discrete fixed-resolution representations in visual working memory.Nature 2008;453:233-235.
    48 Bays PM,Husain M.Dynamic shifts of limited working memory resources in human vision.Science 2008;321:851-854.
    49 Fougnie D,Suchow JW,Alvarez GA.Variability in the quality of visual working memory.Nat Commun 2012;3:1229.
    50 van den Berg R,Awh E,Ma WJ.Factorial comparison of working memory models.Psychol Rev 2014;121:124-149.
    51 Pratte MS,Park YE,Rademaker RL,Tong F.Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory.J Exp Psychol Hum Percept Perform 2017;43:6-17.
    52 Schneegans S,Bays PM.No fixed item limit in visuospatial working memory.Cortex 2016;83:181-193.
    53 Adam KCS,Vogel EK,Awh E.Cognitive psychology.Cogn Psychol 2017;97:79-97.
    54 Kumar S,Joseph S,Pearson B,Teki S,Fox ZV,Griffiths TD,Husain M.Resource allocation and prioritization in auditory working memory.Cogn Neurosci 2013;4:12-20.
    55 Fuster JM,Alexander GE.Neuron activity related to shortterm memory.Science 1971;173:652-654.
    56 Funahashi S,Bruce CJ,Goldman-Rakic PS.Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex.J Neurophysiol 1989;61:331-349.
    57 Goldman-Rakic PS.Cellular basis of working memory.Neuron 1995;14:477-485.
    58 Miller EK,Lundqvist M,Bastos AM.Perspective.Neuron2018;100:463-475.
    59 Miller EK,Cohen JD.An integrative theory of prefrontal cortex function.Annu Rev Neurosci 2001;24:167-202.
    60 Szczepanski S,Knight RT.Insights into human behavior from lesions to the prefrontal cortex.Neuron 2014;83:1002-1018.
    61 Romo R,Brody CD,Hernández A,Lemus L.Neuronal correlates of parametric working memory in the prefrontal cortex.Nature 1999;399:470-473.
    62 Salinas E,Hernández A,Zainos A,Romo R.Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli.J Neurosci 2000;20:5503-5515.
    63 Luna R,Hernández A,Brody CD,Romo R.Neural codes for perceptual discrimination in primary somatosensory cortex.Nat Neurosci 2005;8:1210-1219.
    64 Romo R,Salinas E.Flutter discrimination:neural codes,perception,memory and decision making.Nat Rev Neurosci2003;4:203-218.
    65 Zhou YD,Fuster JM.Mnemonic neuronal activity in somatosensory cortex.Proc Natl Acad Sci U S A 1996;93:10533-10537.
    66 Haynes JD,Rees G.Decoding mental states from brain activity in humans.Nat Rev Neurosci 2006;7:523-534.
    67 Davis T,Poldrack RA.Measuring neural representations with fMRI:practices and pitfalls.Ann N Y Acad Sci 2013;1296:108-134.
    68 Brouwer GJ,Heeger DJ.Decoding and reconstructing color from responses in human visual cortex.J Neurosci 2009;29:13992-14003.
    69 Harrison SA,Tong F.Decoding reveals the contents of visual working memory in early visual areas.Nature 2009;458:632-635.
    70 Ester EF,Serences JT,Awh E.Spatially global representations in human primary visual cortex during working memory maintenance.J Neurosci 2009;29:15258-15265.
    71 Serences JT,Ester EF,Vogel EK,Awh E.Stimulus-specific delay activity in human primary visual cortex.Psychol Sci2009;20:207-214.
    72 Emrich SM,Riggall AC,LaRocque JJ,Postle BR.Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory.J Neurosci 2013;33:6516-6523.
    73 Sprague TC,Ester EF,Serences JT.Reconstructions of information in visual spatial working memory degrade with memory load.Curr Biol 2014;24(18):2174-2180.
    74 Sprague TC,Ester EF,Serences JT.Restoring latent visual working memory representations in human cortex.Neuron2016;91:694-707.
    75 D’Esposito M,Postle BR.The cognitive neuroscience of working memory.Annu Rev Psychol 2015;66:115-142.
    76 Postle BR.The cognitive neuroscience of visual short-term memory.Curr Opin Behav Sci 2015;1:40-46.
    77 Postle BR.How does the brain keep information“in mind”?Curr Dir Psychol Sci 2016;25:151-156.
    78 Ku Y,Bodner M,Zhou YD.Prefrontal cortex and sensory cortices during working memory:quantity and quality.Neurosci Bull 2015;31:175-182.
    79 Xu Y,Chun MM.Dissociable neural mechanisms supporting visual short-term memory for objects.Nature 2006;440:91-95.
    80 Lewis-Peacock JA,Drysdale AT,Oberauer K,Postle BR.Neural evidence for a distinction between short-term memory and the focus of attention.J Cogn Neurosci 2012;24:61-79.
    81 Bettencourt KC,Xu Y.Decoding the content of visual short-term memory under distraction in occipital and parietal areas.Nat Neurosci 2016;19:150-157.
    82 Riggall AC,Postle BR.The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging.J Neurosci 2012;32:12990-12998.
    83 Zhao Y,Kuai S,Zanto T,Ku Y.Neural mechanisms underlying the precision of visual working memory.bioRxiv2018;doi:10.1101/330118.
    84 Xu Y.Reevaluating the sensory account of visual workingmemory storage.Trends Cogn Sci(Regul Ed)2017;21:794-815.
    85 Gayet S,Paffen CLE,Van der Stigchel S.Visual working memory storage recruits sensory processing areas.Trends Cogn Sci(Regul Ed)2018;22:189-190.
    86 Scimeca JM,Kiyonaga A,D’Esposito M.Reaffirming the sensory recruitment account of working memory.Trends Cogn Sci 2018;22:190-192.
    87 Xu Y.Sensory cortex is nonessential in working memory storage.Trends Cogn Sci 2018;22:192-193.
    88 Ku Y,Zhao D,Hao N,Hu Y,Bodner M,Zhou YD.Sequential roles of primary somatosensory cortex and posterior parietal cortex in tactile-visual cross-modal working memory:a single-pulse transcranial magnetic stimulation(spTMS)study.Brain Stimul 2015;8:88-91.
    89 Ku Y,Zhao D,Bodner M,Zhou YD.Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory.Eur J Neurosci2015;42:1905-1911.
    90 Zhao D,Zhou YD,Bodner M,Ku Y.The causal role of the prefrontal cortex and somatosensory cortex in tactile working memory.Cereb Cortex 2018;28:3468-3477.
    91 Wang S,Itthipuripat S,Ku Y.Electrical stimulation over human posterior parietal cortex selectively enhances the capacity of visual short-term memory.J Neurosci 2019;39(3):528-536.
    92 Wolff MJ,Jochim J,Akyürek EG,Stokes MG.Dynamic hidden states underlying working-memory-guided behavior.Nat Neurosci 2017;20(6):864-871.
    93 Sprague TC,Adam KCS,Foster JJ,Rahmati M,Sutterer DW,Vo VA.Inverted encoding models assay population-level stimulus representations,not single-unit neural tuning.eNeuro 2018;5(3).pii:ENEURO.0098-18.2018.doi:10.1523/ENEURO.0098-18.2018.
    94 Sprague TC,Serences JT.Attention modulates spatial priority maps in the human occipital,parietal and frontal cortices.Nat Neurosci 2013;16:1879-1887.
    95 Yu Q,Shim WM.Occipital,parietal,and frontal cortices selectively maintain task-relevant features of multi-feature objects in visual working memory.NeuroImage 2017;157:97-107.
    96 Kumar S,Joseph S,Gander PE,Barascud N,Halpern AR,Griffiths TD.A brain system for auditory working memory.J Neurosci 2016;36:4492-4505.
    97 Ulu?I,Schmidt TT,Wu YH,Blankenburg F.Content-specific codes of parametric auditory working memory in humans.NeuroImage 2018;183:254-262.
    98 Schmidt TT,Blankenburg F.Brain regions that retain the spatial layout of tactile stimuli during working memory-A‘tactospatial sketchpad’?NeuroImage 2018;178:531-539.
    99 Li D,Christ SE,Cowan N.Domain-general and domainspecific functional networks in working memory.Neuroimage2014;102 Pt 2:646-656.
    100 Fries P.A mechanism for cognitive dynamics:neuronal communication through neuronal coherence.Trends Cogn Sci 2005;9:474-480.
    101 Varela F,Lachaux JP,Rodriguez E,Martinerie J.The brainweb:phase synchronization and large-scale integration.Nat Rev Neurosci 2001;2:229-239.
    102 Klimesch W.EEG alpha and theta oscillations reflect cognitive and memory performance:a review and analysis.Brain Res Brain Res Rev 1999;29:169-195.
    103 Kahana MJ,Seelig D,Madsen JR.Theta returns.Curr Opin Neurobiol 2001;11:739-744.
    104 Raghavachari S,Kahana MJ,Rizzuto DS,Caplan JB,Kirschen MP,Bourgeois B,Madsen JR,Lisman JE.Gating of human theta oscillations by a working memory task.JNeurosci 2001;21:3175-3183.
    105 Gevins A,Smith ME,McEvoy L,Yu D.High-resolution EEG mapping of cortical activation related to working memory:effects of task difficulty,type of processing,and practice.Cereb Cortex 1997;7:374-385.
    106 Jensen O,Tesche CD.Frontal theta activity in humans increases with memory load in a working memory task.Eur J Neurosci 2002;15:1395-1399.
    107 Liebe S,Hoerzer GM,Logothetis NK,Rainer G.Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.Nat Neurosci 2012;15:456-462,S1-S2.
    108 Berger H.über das elektrenkephalogramm des menschen.Archiv f Psychiatrie 1929;87:527-570.
    109 Palva S,Palva JM.New vistas for alpha-frequency band oscillations.Trends Neurosci 2007;30:150-158.
    110 Jensen O,Gelfand J,Kounios J,Lisman JE.Oscillations in the alpha band(9-12 Hz)increase with memory load during retention in a short-term memory task.Cereb Cortex 2002;12:877-882.
    111 Spitzer B,Fleck S,Blankenburg F.Parametric alpha-and beta-band signatures of supramodal numerosity information in human working memory.J Neurosci 2014;34:4293-4302.
    112 Bonnefond M,Jensen O.Alpha oscillations serve to protect working memory maintenance against anticipated distracters.Curr Biol 2012;22:1969-1974.
    113 Myers NE,Stokes MG,Walther L,Nobre AC.Oscillatory brain state predicts variability in working memory.J Neurosci 2014;34:7735-7743.
    114 van Moorselaar D,Foster JJ,Sutterer DW,Theeuwes J,Olivers CNL,Awh E.Spatially selective alpha oscillations reveal moment-by-moment trade-offs between working memory and attention.J Cogn Neurosci 2018;30:256-266.
    115 Foster JJ,Bsales EM,Jaffe RJ,Awh E.Alpha-band activity reveals spontaneous representations of spatial position in visual working memory.Curr Biol 2017;27(20):3216-3223.e6..
    116 Foster JJ,Sutterer DW,Serences JT,Vogel EK,Awh E.Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention.Psychol Sci2017;28(7):929-941.
    117 Pfurtscheller G.Central beta rhythm during sensorimotor activities in man.Electroencephalogr Clin Neurophysiol1981;51:253-264.
    118 McFarland DJ,Miner LA,Vaughan TM,Wolpaw JR.Mu and beta rhythm topographies during motor imagery and actual movements.Brain Topogr 2000;12:177-186.
    119 Engel AK,Fries P.Beta-band oscillations-signalling the status quo?Curr Opin Neurobiol 2010;20:156-165.
    120 Tallon-Baudry C,Kreiter A,Bertrand O.Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans.Vis Neurosci1999;16:449-459.
    121 Pinotsis DA,Buschman TJ,Miller EK.Working memory load modulates neuronal coupling.Cereb Cortex 2018;106:20.doi:10.1093/cercor/bhy065.
    122 Wutz A,Loonis R,Roy JE,Donoghue JA,Miller EK.Different levels of category abstraction by different dynamics in different prefrontal areas.Neuron 2018;97:716-726.e8.
    123 Lundqvist M,Herman P,Warden MR,Brincat SL,Miller EK.Gamma and beta bursts during working memory readout suggest roles in its volitional control.Nat Commun2018;9(1):394.doi:10.1038/s41467-017-02791-8.
    124 Lundqvist M,Rose J,Herman P,Brincat SL,Buschman TJ,Miller EK.Gamma and beta bursts underlie working memory.Neuron 2016;90:152-164.
    125 Brincat SL,Miller EK.Frequency-specific hippocampal-prefrontal interactions during associative learning.Nat Neurosci 2015;18(4):576-581.
    126 Buschman TJ,Siegel M,Roy JE,Miller EK.Neural substrates of cognitive capacity limitations.Proc Natl Acad Sci U S A 2011;108:11252-11255.
    127 Buschman TJ,Miller EK.Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices.Science 2007;315:1860-1862.
    128 Fries P,Nikoli?D,Singer W.The gamma cycle.Trends Neurosci 2007;30:309-316.
    129 Fries P.Neuronal gamma-band synchronization as a fundamental process in cortical computation.Annu Rev Neurosci2009;32:209-224.
    130 Brunet N,Vinck M,Bosman CA,Singer W,Fries P.Gamma or no gamma,that is the question.Trends Cogn Sci 2014;18:507-509.
    131 Singer W,Gray CM.Visual feature integration and the temporal correlation hypothesis.Annu Rev Neurosci 1995;18:555-586.
    132 Jensen O,Kaiser J,Lachaux JP.Human gamma-frequency oscillations associated with attention and memory.Trends Neurosci 2007;30:317-324.
    133 Buzsáki G,Wang XJ.Mechanisms of gamma oscillations.Annu Rev Neurosci 2012;35:203-225.
    134 Howard MW,Rizzuto DS,Caplan JB,Madsen JR,Lisman J,Aschenbrenner-Scheibe R,Schulze-Bonhage A,Kahana MJ.Gamma oscillations correlate with working memory load in humans.Cereb Cortex 2003;13:1369-1374.
    135 Palva JM,Monto S,Kulashekhar S,Palva S.Neuronal synchrony reveals working memory networks and predicts individual memory capacity.Proc Natl Acad Sci U S A2010;107:7580-7585.
    136 Palva S,Kulashekhar S,Hamalainen M,Palva JM.Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention.J Neurosci2011;31:5013-5025.
    137 Roux F,Wibral M,Mohr HM,Singer W,Uhlhaas PJ.Gammaband activity in human prefrontal cortex codes for the number of relevant items maintained in working memory.J Neurosci2012;32:12411-12420.
    138 Michalareas G,Vezoli J,van Pelt S,Schoffelen JM,Kennedy H,Fries P.Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas.Neuron 2016;89:384-397.
    139 Richter CG,Thompson WH,Bosman CA,Fries P.Topdown beta enhances bottom-up gamma.J Neurosci 2017;37:6698-6711.
    140 van Kerkoerle T,Self MW,Dagnino B,Gariel-Mathis MA,Poort J,van der Togt C,Roelfsema PR.Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.Proc Natl Acad Sci U S A2014;111:14332-14341.
    141 van Kerkoerle T,Self MW,Roelfsema PR.Layer-specificity in the effects of attention and working memory on activity in primary visual cortex.Nat Commun 2017;8:13804.
    142 Bastos AM,Vezoli J,Bosman CA,Schoffelen JM,Oostenveld R,Dowdall JR,De Weerd P,Kennedy H,Fries P.Visual areas exert feedforward and feedback influences through distinct frequency channels.Neuron 2015;85:390-401.
    143 Roux F,Uhlhaas PJ.Working memory and neural oscillations:alpha-gamma versus theta-gamma codes for distinct WM information?Trends Cogn Sci 2014;18:16-25.
    144 Lisman JE,Idiart MA.Storage of 7+/-2 short-term memories in oscillatory subcycles.Science 1995;267:1512-1515.
    145 Jensen O,Lisman JE.An oscillatory short-term memory buffer model can account for data on the Sternberg task.JNeurosci 1998;18:10688-10699.
    146 Lisman JE,Jensen O.The theta-gamma neural code.Neuron2013;77:1002-1016.
    147 Hu H.Reward and aversion.Annu Rev Neurosci 2016;39:297-324.
    148 Aalto S.Frontal and temporal dopamine release during working memory and attention tasks in healthy humans:a positron emission tomography study using the high-affinity dopamine d2 receptor ligand[11C]FLB 457.J Neurosci 2005;25:2471-2477.
    149 Vijayraghavan S,Wang M,Birnbaum SG,Williams GV,Arnsten AFT.Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory.Nat Neurosci 2007;10:376-384.
    150 Bruder GE,Keilp JG,Xu H,Shikhman M,Schori E,Gorman JM,Gilliam TC.Catechol-O-methyltransferase(COMT)genotypes and working memory:associations with differing cognitive operations.Biol Psychiatry 2005;58:901-907.
    151 Sawaguchi T,Goldman-Rakic PS.D1 dopamine receptors in prefrontal cortex:involvement in working memory.Science 1991;251:947-950.
    152 Luciana M,Depue RA,Arbisi P,Leon A.Facilitation of working memory in humans by a D2 dopamine receptor agonist.J Cogn Neurosci 1992;4:58-68.
    153 Wang M,Vijayraghavan S,Goldman-Rakic PS.Selective D2 receptor actions on the functional circuitry of working memory.Science 2004;303:853-856.
    154 Puig MV,Antzoulatos EG,Miller EK.Prefrontal dopamine in associative learning and memory.Neuroscience 2014;282:217-229.
    155 Puig MV,Miller EK.The role of prefrontal dopamine D1receptors in the neural mechanisms of associative learning.Neuron 2012;74:874-886.
    156 Arnsten AFT.Stress signalling pathways that impair prefrontal cortex structure and function.Nat Rev Neurosci2009;10:410-422.
    157 Arnsten AFT,Li BM.Neurobiology of executive functions:catecholamine influences on prefrontal cortical functions.Biol Psychiatry 2005;57:1377-1384.
    158 Canli T,Lesch KP.Long story short:the serotonin transporter in emotion regulation and social cognition.Nat Neurosci 2007;10:1103-1109.
    159 Luciana M,Collins PF,Depue RA.Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions.Cereb Cortex 1998;8:218-226.
    160 Williams GV,Rao SG,Goldman-Rakic PS.The physiological role of 5-HT2A receptors in working memory.J Neurosci2002;22:2843-2854.
    161 Carter OL,Burr DC,Pettigrew JD,Wallis GM,Hasler F,Vollenweider FX.Using psilocybin to investigate the relationship between attention,working memory,and the serotonin 1A and 2A receptors.J Cogn Neurosci 2005;17:1497-1508.
    162 Howes OD,Kapur S.The dopamine hypothesis of schizophrenia:version III--the final common pathway.Schizophr Bull 2009;35:549-562.
    163 Manoach DS.Prefrontal cortex dysfunction during working memory performance in schizophrenia:reconciling discrepant findings.Schizophr Res 2003;60:285-298.
    164 Lee KH,Williams LM,Breakspear M,Gordon E.Synchronous gamma activity:a review and contribution to an integrative neuroscience model of schizophrenia.Brain Res Brain Res Rev 2003;41:57-78.
    165 Lee J,Park S.Working memory impairments in schizophrenia:a meta-analysis.J Abnorm Psychol 2005;114:599-611.
    166 Gold JM,Hahn B,Zhang WW,Robinson BM,Kappenman ES,Beck VM,Luck SJ.Reduced capacity but spared precision and maintenance of working memory representations in schizophreniareduced capacity but spared memory in schizophrenia.Arch Gen Psychiatry 2010;67:570-577.
    167 Xie W,Cappiello M,Park HB,Deldin P,Chan RCK,Zhang W.Schizotypy is associated with reduced mnemonic precision in visual working memory.Schizophr Res 2018;193:91-97.
    168 Zhao Y,Ran X,Zhang L,Zhang R,Ku Y.Atypically larger variability of resource allocation accounts for visual working memory deficits in schizophrenia.bioRxiv 2018;doi:https://doi.org/10.1101/424523.
    169 Belleville S,Peretz I,Malenfant D.Examination of the working memory components in normal aging and in dementia of the Alzheimer type.Neuropsychologia 1996;34:195-207.
    170 Ku Y.Selective attention on representations in working memory:cognitive and neural mechanisms.PeerJ 2018;6:e4585.
    171 Vogel EK,McCollough AW,Machizawa MG.Neural measures reveal individual differences in controlling access to working memory.Nature 2005;438:500-503.
    172 LaBar KS,Gitelman DR,Parrish TB,Mesulam M.Neuroanatomic overlap of working memory and spatial attention networks:a functional MRI comparison within subjects.NeuroImage 1999;10:695-704.
    173 Awh E,Jonides J.Overlapping mechanisms of attention and spatial working memory.Trends Cogn Sci 2001;5:119-126.
    174 Corbetta M,Shulman GL.Control of goal-directed and stimulus-driven attention in the brain.Nat Rev Neurosci2002;3:201-215.
    175 Carrasco M.Visual attention:The past 25 years.Vis Res2011;51:1484-1525.
    176 Griffin IC,Nobre AC.Orienting attention to locations in internal representations.J Cogn Neurosci 2003;15:1176-1194.
    177 Lepsien J,Nobre AC.Cognitive control of attention in the human brain:Insights from orienting attention to mental representations.Brain Res 2006;1105:20-31.
    178 Myers NE,Walther L,Wallis G,Stokes MG,Nobre AC.Temporal dynamics of attention during encoding versus maintenance of working memory:complementary views from event-related potentials and alpha-band oscillations.JCogn Neurosci 2015;27:492-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700