液压支架压力数据采集系统研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Pressure Data Acquisition System of Hydraulic Support
  • 作者:姚伟 ; 汪爱明 ; 孟国营 ; 陈亮 ; 王子毅
  • 英文作者:YAO Wei;WANG Ai-ming;MENG Guo-ying;CHEN Liang;WANG Zi-yi;School of Mechanical Electrical and Information Engineering, China University of Mining and Technology(Beijing);
  • 关键词:综采液压支架 ; 单片机 ; PCC ; IPC ; 远程在线压力监测
  • 英文关键词:hydraulic support;;single-chip microcomputer;;PCC;;IPC;;remote on-line monitoring of pressure data
  • 中文刊名:MTJS
  • 英文刊名:Coal Technology
  • 机构:中国矿业大学(北京)机电与信息工程学院;
  • 出版日期:2019-03-10
  • 出版单位:煤炭技术
  • 年:2019
  • 期:v.38;No.303
  • 基金:国家重点计划专项(2016YFC0600907);; 中央高校基本科研业务费专项资金资助(00/800015HJ);; 国家自然科学基金(U1361127)
  • 语种:中文;
  • 页:MTJS201903045
  • 页数:4
  • CN:03
  • ISSN:23-1393/TD
  • 分类号:138-141
摘要
为研发大容量、低成本的液压支架压力数据采集系统,分别以STC89C55单片机、PCC和IPC为核心,采用软、硬抗扰技术,开发了监测分站、顺槽监测总站和地面监测站,以CAN总线和以太网作为通信桥梁,实现了从工作面支架到顺槽、再到地面的压力数据可靠传输,形成了节点容量达140个、覆盖工作面全部支架的压力数据采集系统。试验表明:分站测量精确度高,相对不确定度最高仅0.031%,正反行程测量的一致性也很高;系统最大巡检周期25.23 s、画面响应时间1.72 s、分站至顺槽总站之间最大数据距离2 km、总站至井下环网交换机传输接口距离10 km,实现了工作面液压支架压力远程在线监测和记录功能。
        In order to develop a large capacity and low cost pressure data acquisition system for hydraulic support, monitoring substations, a parallel groove main station and a ground monitoring station is researched by using STC89 C55 single-chip microcomputer, PCC and IPC, combining disturbance rejection technique. CAN-bus and Ethernet are chosen as a bridge for data exchanging for from working face to parallel groove and ground. The developed data acquisition system′ s nodes are up to140 and all the hydraulic supports on working face can be covered. Tests show that the pressure measurements precision of the substation is very high, the maximum relative uncertainty is only0.031%, the consistency of the forward and backward measurement is also very good. The maximum time of system inspection cycle is 25.23 s, the maximum response time of screen display is 1.72 s. The maximum communication distance between the substation and the main station is 2 km. The communication distance is 10 km between the main station and the transmission interface of the switch in the ethernet network underground. Pressure data of hydraulic support can be monitored on-line remotely and recorded by the developed system.
引文
[1]宋磊,宋方立.液压支架电液控制系统技术的发展与现状分析[J].液压气动与密封,2012,32(2):9-10,33.
    [2]张良.液压支架电液控制系统的应用现状及发展趋势[J].煤炭科学技术,2003,31(2):5-8.
    [3]李首滨.国产液压支架电液控制系统技术现状[J].煤炭科学技术,2010,38(1):53-56.
    [4]张小燕.煤矿液压支架电液控制系统的应用现状研究[J].中国高新技术企业,2011(10):132-133.
    [5]王鸿建,冯小龙,张剑英,等.基于PIC的煤矿液压支架压力监测系统设计[J].煤炭工程,2009(9):117-119.
    [6]丁铖,孟国营,崔国梁,等.基于ARM和CAN总线的液压支架压力监测平台的设计[J].仪表技术与传感器,2012(11):169-171.
    [7]王璐,周中阔,韩忠.基于CAN总线的煤矿液压支架压力监测系统设计[J].煤炭技术,2012,31(1):43-44.
    [8]陈亮,孟国营,牛一村,等.基于CAN总线及无线传感技术的液压支架压力监测系统[J].煤炭工程,2010(6):111-113.
    [9]胡少轩.基于CC2430液压支架压力监测系统的研究[J].煤矿机械,2011,32(9):142-145.
    [10]丁恩杰,孟祥,李晓,等.基于无线传感器网络的井下液压支架压力监测系统设计[J].煤矿机械,2010,31(10):139-141.
    [11]张军,何小刚.基于ZigBee的煤矿液压支架压力监测系统的设计[J].煤炭技术,2016,35(4):251-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700