补连塔和保德煤矿矸石中无机氮和重金属的溶出特征对比研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dissolution characteristics of inorganic nitrogen and heavy metals in coal gangue from Bulianta and Baode mines
  • 作者:赵丽 ; 孙艳芳 ; 罗绍河 ; 王世东 ; 张垒 ; 吕经纬 ; 宋盈颖
  • 英文作者:ZHAO Li;SUN Yanfang;LUO Shaohe;WANG Shidong;ZHANG Lei;LV Jingwei;SONG Yingying;Department of Resource & Environmental Engineering, Henan Polytechnic University;Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region;Key Laboratory of Mine Geological Hazards Mechanism and Control;CCTEG Xi'an Research Institute;
  • 关键词:地下水库 ; 煤矸石 ; 重金属 ; 无机氮
  • 英文关键词:groundwater reservoir;;coal gangue;;metal ions;;inorganic nitrogen
  • 中文刊名:GHZH
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:河南理工大学资源环境学院;中原经济区煤层(页岩)气河南省协同创新中心;矿山地质灾害成灾机理与防控重点实验室;中煤科工集团西安研究院有限公司;
  • 出版日期:2019-07-11
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:v.33;No.254
  • 基金:国家自然科学基金项目(41402216);; 2019年度河南省高等学校重点科研项目(19A170008);; 矿山地质灾害成灾机理与防控重点实验室开放课题(KF2018-06)联合资助
  • 语种:中文;
  • 页:GHZH201910026
  • 页数:6
  • CN:10
  • ISSN:15-1112/N
  • 分类号:174-179
摘要
文中以神东矿区补连塔矿和保德矿煤矸石为研究对象,通过浸泡实验来对比研究不同地质年代煤田煤矸石中Fe~(3+)、Cu~(2+)、Cr~(6+)及无机氮的溶出特征,以此来探讨煤矿地下水库中矸石对矿井水质的影响。研究结果表明:两种煤矸石浸泡液中无机氮均以氨氮含量最高,其变化趋势与硝酸盐氮一致,亚硝酸盐氮含量最低,但各无机氮含量均以补连塔矿较高。补连塔矿的单位质量煤矸石中重金属的最大溶出量分别为:Fe~(3+),2.904mg/kg;Cu~(2+),0.314mg/kg;Cr~(6+),0.248mg/kg,且均呈现先增加后降低的变化规律;浸泡液电导率整体上呈增加趋势,最大值为438.7μS/cm。保德矿煤矸石浸泡液中Fe~(3+)、Cu~(2+)、Cr~(6+)含量大部分低于检出限,电导率呈对数增长至最大值131.2μS/cm。两种煤矸石浸泡液均呈弱碱性,由于煤矸石组成及结构的不同,造成其pH在96h后的变化规律恰好相反。
        The coal gangues from Bulianta and Baode Coal mines in the Shendong Mining Area were taken as the research object in this paper. The leaching experiments were used to compare the dissolution characteristics of Fe~(3+),Cu~(2+),Cr~(6+) and inorganic nitrogen in coal gangues in different geological ages. In this way, the influence of gangue in the underground water reservoir of coal mines on mine water quality was discussed. The result shows that for the ammonia nitrogen is the highest in the two types of coal gangue soaking liquids,and the change trend is consistent with nitrate nitrogen, and nitrite nitrogen content is the lowest. However, the content of each inorganic nitrogen is higher in the Bulianta Mine. The maximum dissolved amounts of heavy metal ions per kilogram coal gangue in Bulianta mine are: Fe~(3+)、 2.904 mg/kg, Cu~(2+)、0.314 mg/kg, Cr~(6+) 、0.248 mg/kg; all show increase firstly and then decrease, and the conductivity shows an increasing trend integrally, and the maximum value is 438.7μS/cm. The contents of Fe~(3+),Cu~(2+),and Cr~(6+) in the water samples obtained from the coal gangue in Baode mine are mostly lower than the detection limit, and the conductivity increases logarithmically to the maximum 131.2μS/cm. Both coal gangue soaking liquids are weakly alkaline. Due to the different composition and structure of coal gangue, the change of pH is just the opposite after 96 h.
引文
[1] 顾大钊.煤矿地下水库理论框架和技术体系[J].煤炭学报,2015,40(2):239-246.
    [2] 李强,李永春,陈大勇,等.神东矿区水资源可持续利用问题研究[J].干旱区资源与环境,2013,27(9):141-147.
    [3] 顾大钊,颜永国,张勇,等.煤矿地下水库煤柱动力响应与稳定性分析[J].煤炭学报,2016,41(7):1589-1597.
    [4] 顾大钊,张勇,曹志国.我国煤炭开采水资源保护利用技术研究进展[J].煤炭科学技术,2016,44(1):1-7.
    [5] Sun R Y,Liu G J,Zheng L G,Chou C L,Characteristics of coal quality and their relationship with coal-forming environment:a case study from the Zhuji exploration area,Huainan coal field,Anhui,China[J].Energy,2010,35:423-435.
    [6] Zhou C,Liu G,Fang T,et al.Leaching characteristic and environmental implication of rejection rocks from Huainan Coalfield,Anhui Province,China[J].Journal of Geochemical Exploration,2014,143(3):54-61.
    [7] 王明仕,刘琳瑶,宋党育.煤矸石-粉煤灰烧结砖中微量元素的浸出特征研究[J].河南理工大学学报(自然科学版),2016,35(6):823-827.
    [8] Tang Q,Li L,Zhang S,et al.Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area[J].Journal of Geochemical Exploration,2018,186:1-11.
    [9] Zhou C C,Liu G J,Cheng S W,et al.The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant[J].Scientific Reports,2014(4):6221.
    [10] Zhou C C,Liu G J,Wu D,et al.Mobility behavior and environmental implications of trace elements associated with coal gangue:a case study at the Huainan Coalfield in China[J].Chemosphere,2014,95(1):193-199.
    [11] 赵丽,孙艳芳,杨志斌,等.煤矸石去除矿井水中水溶性有机物及氨氮的实验研究[J].煤炭学报,2018,43(1):236-241.
    [12] 赵丽,田云飞,王世东,等.煤矸石中溶解性有机质(DOM)溶出的动力学变化[J].煤炭学报,2017,42(9):2457-2463.
    [13] 刘钦甫,刘龙涛,沈少川,等.铵伊利石质矸石氮的溶出实验[J].煤炭学报,2009,34(8):1022-1026.
    [14] 刘钦甫,郑丽华,张金山,等.晋东南和豫中地区煤矸石中氮及其环境效应[J].煤田地质与勘探,2010,38(1):33-36.
    [15] 刘钦甫,郑丽华,张金山,等.煤矸石中氮溶出的动态淋滤实验[J].煤炭学报,2010,35(6):1009-1014.
    [16] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [17] 肖红伟,艾文强,肖化云,等.淡水亚硝酸盐样品最佳保存条件的探讨[J].环境保护科学,2017(6):45-48.
    [18] Mao H L,Long C M,Yang Y,Zou,H T.Speciation and distribution characteristics of heavy metals in soil of Guizhou Niujiaotang lead-zinc mining area[J].Environmental Science & Technology,2014,70(2):998-1001.
    [19] Yang Y M,Li Y,Zhang J H.Chemical speciation of cadmium and lead and their bioavailability to cole (Brassica campestris L.) from multi-metals contaminated soil in northwestern China[J].Chemical Speciation and Bioavailability,2016,28(1-4):33-41.
    [20] 北京师范大学,华中师范大学,南京师范大学无机化学实验室.无机化学(下册第四版)[M].北京:高等教育出版社,2003.
    [21] 杨娅,季宏兵.新化矿区煤矸石中微量元素赋存形态及浸出特征[J].地球与环境,2016,44(1):36-46.
    [22] Liu G,Zhang H,Gao L,Zheng L,Peng Z.Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district,China[J].Fuel Process Technology,2004,85(15):1635-1646.
    [23] 丁帅帅,郑刘根,程桦.电感耦合等离子体发射光谱-逐级化学提取法研究低硫煤矸石中微量元素的赋存状态及其环境效应[J].岩矿测试,2015,34(6):629-635.
    [24] Ribeiro J,Ferreira D S E,Jesus A P D,et al.Petrographic and geochemical characterization of coal waste piles from Douro Coalfield (NW Portugal)[J].International Journal of Coal Geology,2011,87(3):226-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700