油水乳液分离吸附材料的分离原理、构建方法和分离性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Separation principle, fabrication strategies and performance of sorbents for oil-water emulsions
  • 作者:戴国琛 ; 张泽天 ; 高文伟 ; 李正军
  • 英文作者:DAI Guochen;ZHANG Zetian;GAO Wenwei;LI Zhengjun;Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University;National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University;
  • 关键词:生物质 ; 乳液 ; 分离 ; 吸附 ; 多孔介质
  • 英文关键词:biomass;;emulsions;;separation;;adsorption;;porous media
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:四川大学皮革化学与工程教育部重点实验室;四川大学制革清洁技术国家工程实验室;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:国家自然科学基金面上项目(21376153)
  • 语种:中文;
  • 页:HGJZ201904022
  • 页数:9
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:196-204
摘要
采用吸附材料进行油水分离是经济且非常有效的方法。吸附材料主要有无机材料、合成高分子材料和天然有机纤维材料等。相比较而言,天然有机纤维材料为可再生生物质资源,来源广泛、生物降解性好,可有效防止二次污染,具有良好的发展潜力,备受关注。本文首先简要介绍了油水乳液稳定性的影响因素,然后综述了油水分离材料的分离原理、构建方法和分离性能等研究进展,并总结了油水乳液分离材料的表征及其分离性能的评价指标。特别地,重点总结了天然有机纤维基吸附材料分离油水乳液的研究进展。最后指出研究智能响应型天然有机纤维基油水乳液分离吸附材料是重要的发展方向。
        The use of adsorption materials for oil-water separation is an economic and very effective method. The sorbents mainly include inorganic materials, synthetic polymers, natural organic fiber materials, and so on. Among them, natural organic fiber materials are renewable biomass resources and have extensive sources and good biodegradability, which can effectively prevent secondary pollution, and thus have received considerable attention recently. The factors influencing the stability of oil-water emulsions are briefly introduced. Then, we summarize the research progress on the separation mechanism,fabrication method and separation performance of the materials for oil-water separation. Meanwhile,characterization methods of the sorbents for emulsion separation and evaluation indicators of their separation performance are also summarized. In particular, we focus on the research progresses of natural organic fiber-based sorbents for separating oil-water emulsions. Finally, it is indicated that investigating the sorbents based on smart responsive natural organic fiber for oil-water emulsion separation is an important development direction.
引文
[1] DUBANSKY B, WHITEHEAD A, MILLER J T, et al. Multitissue molecular, genomic, and developmental effects of the deepwater horizon oil spill on resident gulf killifish(fundulus grandis)[J]. Sci.Technol., 2013, 47(10):5074-5082.
    [2] CHAN Y J, CHONG M F, CHUNGLIM L, et al. A review on anaerobic-aerobic treatment of industrial and municipal wastewater[J].Chemical Engineering Journal, 2009, 155(1/2):1-18.
    [3] WANGB,LIANGWX,GUOZG,etal.Biomimeticsuper-lyophobicand super-lyophilicmaterialsappliedforoil/waterseparation:anewstrategy beyond nature[J]. Chem. Soc. Rev., 2015, 44(1):336-361.
    [4] TADROS T, IZQUIERDO P, ESQUENA J, et al. Formation and stability of nanoemulsions[J]. Adv. Colloid Interface Sci., 2014, 108(10):303-318.
    [5] CHANDHARY J P, NATARAJ S K, GOGDA A, et al. Bio-based superhydrophilic foam membranes for sustainable oil-water separation[J]. Green Chem., 2014, 16(10):4552-4558.
    [6] LIU M J, WANG S T, WEI Z X, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Adv. Mater.,2009, 21(6):665-669.
    [7] XIN B, HAO J. Reversibly switchable wettability[J]. Chemical Society Reviews, 2010, 39(2):769-782.
    [8] FENG X J, FENG L, JIN M H, et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. J.Am. Chem. Soc., 2004, 126(1):62-63.
    [9] SUN T L, WANG G J, FENG L, et al. Responsive switching between superhydrophobicity and superhydrophilicity[J]. Angew. Chem. Int.Ed., 2004, 43(3):357-360.
    [10] XU L, CHEN W, MULCHANDANI A, et al. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic[J]. Angewandte Chemie, 2010, 117(37):6163-6166.
    [11] YU X, WANG Z, JIANG Y, et al. Reversible pH-responsive surface:from superhydrophobicity to superhydrophilicity[J]. Advanced Materials, 2010, 17(10):1289-1293.
    [12] CHENG M, LIU Q, JU G, et al. Bell-shaped superhydrophilicsuperhydrophobic-superhydrophilic double transformation on a pHresponsive smart surface[J]. Advanced Materials, 2013, 26(2):306-310.
    [13] ZHANG L B, ZHANG Z H, WANG P. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media:toward controllable oil/water separation[J]. NPG Asia Materials, 2012, 4. DOI:org/10.1038/am2014.14.
    [14] CAO Y, LIU N, FU C, et al. Thermo and pH dual-responsive materials for controllable oil/water separation[J]. ACS Applied Materials&Interfaces, 2014, 6(3):2026-2030.
    [15] WANG J T, HAN F L, LIANG B, et al. Hydrothermal fabrication of robustly superhydrophobic cotton fibers for efficient separation of oil/water mixtures and oil-in-water emulsions[J]. Journal of Industrial and Engineering Chemistry, 2017, 54:174-183.
    [16] MENG G, PENG H, WU J, et al. Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation[J]. Fibers&Polymers, 2017, 18(4):706-712.
    [17] DU W N, HAN X N, LI Z J, et al. Oil sorption behaviors of porous polydimethylsiloxane modified collagen fiber matrix[J]. Journal of Applied Polymer Science, 2015, 132(44):DOI:10.1002/app.42727.
    [18]杜卫宁,韩晓娜,李正军,等.天然有机纤维吸油材料表征及吸油性能影响因素[J].中国皮革, 2015, 44(9):39-44.DU W N, HAN X N, LI Z J, et al. Characterization of nature organic fiber oil absorption material and influence factors of performmance[J].China Leather, 2015, 44(9):39-44.
    [19] DU W N, DAI G C, WANG B C, et al. Biodegradable porous organosilicone-modified collagen fiber matrix:synthesis and high oil absorbency[J]. Journal of Applied Polymer Science, 2018, DOI:10.1002/APP.46264.
    [20] GE J, ZHAO H Y, ZHU H W, et al. Advanced sorbents for oil‐spill cleanup:recent advances and future perspectives[J]. Advanced Materials, 2016, 28(47):10459-10490.
    [21] PENG Y B, GUO F, WEN Q Y, et al. A novel polyacrylonitrile membrane with a high flux for emulsified oil/water separation[J].Separation&Purification Technology, 2017, 184:72-78.
    [22] CHEN X L, LIANG Y N, TANG X Z, et al. Additive-free poly(vinylidene fluoride)aerogel for oil/water separation and rapid oil absorption[J]. Chemical Engineering Journal, 2017, 308:18-26.
    [23]王忠明,廖学品,石碧.单宁改性皮胶原纤维膜用于油水分离的研究[J].高校化学工程学报, 2008, 22(3):150-154.WANG Z M, LIAO X P, SHI B. Separation of oil from water by tannin modification collagen fiber membrane[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(3):150-154.
    [24] BU Z, ZANG L, ZHANG Y, et al. Magnetic porous graphene/multiwalled carbon nanotube beads from microfluidics:a flexible and robust oil/water separation material[J]. RSC Advances, 2017, 7(41):25334-25340.
    [25] SHI Z, ZHANG W, ZHANG F, et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films[J]. Advanced Materials, 2013, 25(17):2422-2427.
    [26] WANG G, ZENG Z, WU X, et al. Three-dimensional structured sponge with high oil wettability for the clean-up of oil contaminations and separation of oil-water mixtures[J]. Polymer Chemistry, 2014, 5(20):5942-5948.
    [27] KANSARA A M, CHAUDHRI S G, SINGH P S. A facile one-step preparation method of recyclable superhydrophobic polypropylene membrane for oil-water separation[J]. RSC Advances, 2016, 6(66):61129-61136.
    [28] YANG H C, LIAO K J, HUANG H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2014, 2(26):10225-10230.
    [29] LI Y, ZHANG Z, GE B, et al. A versatile and efficient approach to separate both surfactant-stabilized water-in-oil and oil-in-water emulsions[J]. Separation&Purification Technology, 2016, 176:1-7.
    [30] WANG G, HE Y, WANG H, et al. A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation[J]. Green Chemistry, 2015, 17(5):3093-3099.
    [31] WU Z, LI Y, ZHANG L, et al. Thiol-ene click reaction on cellulose sponge and its application for oil/water separation[J]. RSC Advances,2017, 7(33):20147-20151.
    [32] KHOPADE A J, CARUSO F. Investigation of the factors influencing the formation of dendrimer/polyanion multilayer films[J]. Langmuir,2002, 18(20):7669-7676.
    [33] ZANG L, MA J, LV D, et al. A core-shell fiber-constructed pHresponsive nanofibrous hydrogel membrane for efficient oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(36):19398-19405.
    [34] WU J, JIANG Y, JIANG D, et al. The fabrication of pH-responsive polymeric layer with switchable surface wettability on cotton fabric for oil/water separation[J]. Materials Letters, 2015, 160:384-387.
    [35] CHENG B, LI Z, LI Q, et al. Development of smart poly(vinylidene fluoride)-graft-poly(acrylicacid)tree-likenanofibermembraneforpHresponsive oil/water separation[J]. Journal of Membrane Science, 2017,534:1-8.
    [36] LIU Y, ZHANG K, SON Y, et al. A smart switchable bioinspired copper foam responding to different pH droplets for reversible oilwater separation[J]. Journal of Materials Chemistry A, 2017, 5(6):2603-2612.
    [37] ZHU H, CHEN D, LI N, et al. Graphene foam with switchable oil wettability for oil and organic solvents recovery[J]. Advanced Functional Materials, 2015, 25(4):597-605.
    [38] LI J J, ZHOU Y N, LUO Z H. Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation[J]. Chemical Engineering Journal, 2017, 322:693-701.
    [39] XIANG Y, SHEN J, WANG Y, et al. A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water[J]. RSC Advances, 2015, 5(30):23530-23539.
    [40] GIRIFALACO L A, GOOD R J. A theory for the estimation of surface and interfacial energies.Ⅰ. Derivation and application to interfacial tension[J]. J. Phys. Chem., 1957, 61(7):904-909.
    [41] HU L, GAO S, DING X, et al. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions[J]. ACS Nano, 2015, 9(5):4835-4842.
    [42] WANG J, ZHENG Y. Oil/water mixtures and emulsions separation of stearic acid-functionalized sponge fabricated via a facile one-step coating method[J]. Separation and Purification Technology, 2017, 181:183-191.
    [43] YIN J, LI X, ZHOU J, et al. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity[J]. Nano Letters,2013, 13(7):3232-3236.
    [44] HWANG H S, KIM N H, LEE S G, et al. Facile fabrication of transparent superhydrophobic surfaces by spray deposition[J]. ACS Applied Materials&Interfaces, 2011, 3(7):2179-2183.
    [45] SASMAL A K, MONDAL C, SINHA A K, et al. Fabrication of superhydrophobic copper surface on various substrates for roll-off,self-cleaning and water/oil separation[J]. ACS Applied Materials&Interfaces, 2014, 6(24):22034-22043.
    [46] LI Y, ZHANG Z, WANG M, et al. One-pot fabrication of nanoporous polymer decorated materials:from oil-collecting devices to highefficiency emulsion separation[J]. Journal of Materials Chemistry A,2017, 5(10):5077-5087.
    [47] GU J, XIAO P, CHEN J, et al. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions[J]. Journal of Materials Chemistry A, 2014, 2(37):15268-15272.
    [48] XU Z, ZHAO Y, WANG H, et al. Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oilwater separation[J]. ACS Applied Materials&Interfaces, 2016, 8(8):5661-5667.
    [49]卢季.热致相分离法制备PVDF膜的研究[D].宁波:宁波大学,2013.LU J. The study of polyvinylidene fluoride membrane via thermally induced phase separation[D]. Ningbo:Ningbo University, 2013.
    [50] CHENG Z, WANG J, LAI H, et al. pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film[J].Langmuir the ACS Journal of Surfaces&Colloids, 2015, 31(4):1393-1399.
    [51] LIU H, GENG B, CHEN Y, et al. Review on the aerogel-type oil sorbents derived from nanocellulose[J]. ACS Sustainable Chemistry&Engineering, 2016, 5(1):49-66.
    [52] ZHU Y, XIE W, LI J, et al. pH-induced non-fouling membrane for effective separation of oil-in-water emulsion[J]. Journal of Membrane Science, 2015, 477(11):131-138.
    [53] LI L, LI B, SUN H, et al. Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(28):14858-14864.
    [54] WANG C F, CHEN L T. Preparation of superwetting porous materials for ultrafast separation of water-in-oil emulsions[J]. Langmuir, 2017,33(8):1969-1973.
    [55] NING L Q, XU N K, WANG R, et al. Fibrous membranes electrospun from the suspension polymerization product of styrene and butyl acrylate for oil-water separation[J]. RSC Advances, 2015, 5(70):57101-57113.
    [56] KHOSRAVI M, AZIZIAN S. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup[J]. ACS Applied Materials&Interfaces, 2015, 7(45):25326-25333.
    [57]朱纪磊,奚正平,汤慧萍,等.多孔结构表征及分形理论研究简况[J].稀有金属材料与工程, 2006, 35(s2):452-456.ZHU J L, XI Z P, TANG H P, et al. Study on characterization porous structure and fractal theory[J]. Rare Metal Materials and Engineering,2006, 35(s2):452-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700