液滴撞击柔性材料表面铺展特性的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:On the maximum spreading of liquid droplets impacting on soft surfaces
  • 作者:杨磊 ; 杨向龙 ; 王甫军
  • 英文作者:Yang Lei;Yang Xianglong;Wang Fujun;College of Civil and Transportation Engineering,Shenzhen University;Department of Mechanical and Aerospace Engineering,North Carolina State University;
  • 关键词:液滴 ; 柔性材料 ; 移动接触线 ; 能量守恒 ; 最大铺展直径
  • 英文关键词:droplet;;flexible material;;contact line;;energy balance;;maximum spreading diameter
  • 中文刊名:LTLC
  • 英文刊名:Journal of Experiments in Fluid Mechanics
  • 机构:深圳大学土木与交通工程学院;北卡罗来纳州立大学机械与航空航天系;
  • 出版日期:2019-06-15
  • 出版单位:实验流体力学
  • 年:2019
  • 期:v.33;No.149
  • 基金:国家自然科学基金资助项目(11102116);; 深圳市科技计划资助项目(GJHS20120621155355526)
  • 语种:中文;
  • 页:LTLC201903010
  • 页数:7
  • CN:03
  • ISSN:11-5266/V
  • 分类号:85-91
摘要
采用高速摄影与计算机图像识别技术,研究了单个液滴撞击不同厚度、不同弹性模量的聚二甲基硅氧烷(PDMS)样品表面后的动态铺展过程,获得了液滴与柔性材料表面的移动接触线直径随时间的变化规律。实验结果表明:柔性材料在撞击过程中受压变形所导致的固体材料粘性能量耗散与系统的总能量相比很小,不会对液滴的铺展过程产生明显影响;在较低的撞击速度下,柔性材料表面形成的润湿脊所导致的粘弹性能量耗散是系统能量耗散的重要因素,且随着柔性材料弹性模量的减小而增大,因此液滴撞击弹性模量较小的PDMS表面时的最大铺展系数相对较小;当撞击速度增大后,粘弹性能量耗散在总能量耗散中所占的比例降低,液滴铺展过程中的液体粘性能量耗散所占比例逐渐升高,柔性材料弹性模量对液滴铺展行为的影响逐渐降低。
        With the method of the high-speed camera and image recognition,the spreading procedure of the liquid droplet impacting on the surface of Polydimethylsiloxane(PDMS)with different thickness and different modulus is obtained.The variation curves of between the spread factor with time are also plotted.Compared with the total energy of the system,the viscous energy dissipation caused by the compression deformation of the PDMS substrate is too small to affect the spreading procedure.In the case of lower impact velocity,the viscoelastic energy dissipation caused by the wetting ridge,which is formed on the surface of PDMS,is the major component of the total energy dissipation of the system.It increases with the decrease of the modulus of flexible materials.For this reason,the spread factor shows a decrease trend with the decrement of the modulus of PDMS.When the impact velocity increases,the viscous energy dissipation becomes the major component of the total energy dissipation and the spread factor remains unchanged with the change of the modulus of the flexible material.
引文
[1]van Dam D B,Le Clerc C.Experimental study of the impact of an ink-jet printed droplet on a solid substrate[J].Physics of Fluids,2004,16(9):3403-3414.
    [2]Gavaises M,Theodorakakos A,Bergeles G.Modeling wall impaction of diesel sprays[J].International Journal of Heat and Fluid Flow,1996,17(2):130-138.
    [3]Sampath S,Jiang X.Splat formation and microstructure development during plasma spraying:deposition temperature effects[J].Materials Science and Engineering:A,2001,304-306:144-150.
    [4]张洪,张文倩,郑英.过冷大水滴结冰探测技术研究进展[J].实验流体力学,2016,30(3):33-39.Zhang H,Zhang W Q,Zheng Y.Research progress on supercooled large droplet icing detection technology[J].Journal of Experiments in Fluid Mechanics,2016,30(3):33-39.
    [5]叶学民,李永康,李春曦.受热基底上的液滴铺展及换热特性[J].物理学报,2016,65(23):234701.Ye X M,Li Y K,Li C X.Spreading and heat transfer characteristics of droplet on a heated substrate[J].Acta Physica Sinica,2016,65(23):234701.
    [6]贾卫东,朱和平,董祥,等.喷雾液滴撞击大豆叶片表面研究[J].农业机械学报,2013,44(12):87-94,113.Jia W D,Zhu H P,Dong X,et al.Impact of spray droplet on soybean leaf surface[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(12):87-94,113.
    [7]Joung Y S,Buie C R.Aerosol generation by raindrop impact on soil[J].Nature Communications,2015,6:6083.
    [8]Liu Y Q,Sun N,Liu J W,et al.Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops[J].ACS Nano,2018,12(3):2893-2899.
    [9]Beemer D L,Wang W,Kota A K.Durable gels with ultra-low adhesion to ice[J].Journal of Materials Chemistry A,2016,4(47):18253-18258.
    [10]Cao X,Yang J,Wang N,et al.Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science[J].Advanced Energy Materials,2016,6(23):1600665.
    [11]Bennett T,Poulikakos D.Splat-quench solidification:estimating the maximum spreading of a droplet impacting a solid surface[J].Journal of Materials Science,1993,28(4):963-970.
    [12]Hung Y L,Wang M J,Liao Y C,et al.Initial wetting velocity of droplet impact and spreading:Water on glass and parafilm[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,384(1-3):172-179.
    [13]毕菲菲,郭亚丽,沈胜强,等.液滴撞击固体表面铺展特性的实验研究性[J].物理学报,2012,61(18):184702.Bi F F,Guo Y L,Shen S Q,et al.Experimental study of spread characteristics of droplet impacting solid surface[J].Acta Physica Sinica,2012,61(18):295-300.
    [14]Scheller B L,Bousfield D W.Newtonian drop impact with a solid surface[J].AIChE Journal,1995,41(6):1357-1367.
    [15]Mao T,Kuhn D C S,Tran H.Spread and rebound of liquid droplets upon impact on flat surfaces[J].AIChE Journal,1997,43(9):2169-2179.
    [16]Roisman I V,Rioboo R,Tropea C.Normal impact of a liquid drop on a dry surface:model for spreading and receding[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2002,458(2022):1411-1430.
    [17]Lee J B,Laan N,de Bruin K G,et al.Universal rescaling of drop impact on smooth and rough surfaces[J].Journal of Fluid Mechanics,2016,786(4):R4.
    [18]Huang H M,Chen X P.Energetic analysis of drop’s maximum spreading on solid surface with low impact speed[J].Physics of Fluids,2018,30(2):022106.
    [19]Shanahan M E R,Carre A.Viscoelastic dissipation in wetting and adhesion phenomena[J].Langmuir,1995,11(4):1396-1402.
    [20]Pepper R E,Courbin L,Stone H A.Splashing on elastic membranes:The importance of early-time dynamics[J].Physics of Fluids,2008,20(8):082103.
    [21]Rioboo R,VouéM,Ad2o H,et al.Drop impact on soft surfaces:beyond the static contact angles[J].Langmuir,2010,26(7):4873-4879.
    [22]Howland C J,Antkowiak A,Castrejon-Pita J R,et al.It’s harder to splash on soft solids[J].Physical Review Letters,2016,117(18):184502.
    [23]Carre M,Shanahan M E R.Direct evidence for viscosityindependent spreading on a soft solid[J].Langmuir,1995,11(3):24-26.
    [24]Alizadeh A,Bahadur V,Shang W,et al.Influence of substrate elasticity on droplet impact dynamics[J].Langmuir,2013,29(14):4520-4524.
    [25]Chen L Q,Auernhammer G K,Bonaccurso E.Short time wetting dynamics on soft surfaces[J].Soft Matter,2011,7(19):9084-9089.
    [26]Chen L Q,Bonaccurso E,Deng P G,et al.Droplet impact on soft viscoelastic surfaces[J].Physical Review E,2016,94(6):063117.
    [27]Chen L Q,Li Z G.Bouncing droplets on nonsuperhydrophobic surfaces[J].Physical Review E.2010,82(1):016308.
    [28]Pasandideh-Fard M,Qiao Y M,Chandra S,et al.Capillary effects during droplet impact on a solid surface[J].Physics of Fluids,1996,8(3):650-659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700