Ti6Al4V钛合金扭转复合微动特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Dual Rotary Fretting Behavior of Ti6Al4V Titanium Alloy
  • 作者:张媛媛 ; 王宇星 ; 刘娟 ; 沈火明
  • 英文作者:ZHANG Yuanyuan;WANG Yuxing;LIU Juan;SHEN Huoming;School of Mechanics and Engineering,Southwest Jiaotong University;
  • 关键词:Ti6Al4V ; 扭转复合微动 ; 数值模拟 ; 压力分布 ; Mises应力
  • 英文关键词:Ti6Al4V;;dual rotary fretting;;numerical method;;pressure distribution;;Mises stress
  • 中文刊名:CGGL
  • 英文刊名:Journal of Chongqing University of Technology(Natural Science)
  • 机构:西南交通大学力学与工程学院;
  • 出版日期:2018-08-15
  • 出版单位:重庆理工大学学报(自然科学)
  • 年:2018
  • 期:v.32;No.386
  • 基金:国家自然科学基金面上项目(11672252);国家自然科学青年基金资助项目(11502218)
  • 语种:中文;
  • 页:CGGL201808012
  • 页数:5
  • CN:08
  • ISSN:50-1205/T
  • 分类号:84-88
摘要
采用球/平面接触模型,研究了Ti6Al4V钛合金试样在52100钢球作用下的扭转复合微动特性。利用ABAQUS建立了摩擦副的三维有限元模型,研究了当法向荷载为50 N时,不同倾斜角(10°~60°)和不同角位移幅值(0.25°~5°)下的扭转复合微动。结果表明:随着倾斜角或角位移幅值的增加,接触压力略有增加;Mises等效应力云图在试样的接触表面和厚度方向均呈现出不对称性,主要是由转动分量引起;随着倾斜角的增加,扭转复合微动由扭动微动控制逐渐变为转动微动控制。因此,扭转复合微动特性非常依赖于倾斜角和角位移幅值。
        A Ti6Al4V titanium alloy flat specimen indented by a 52100 steel ball is investigated.Based on the ABAQUS software,a three-dimensional finite element model is established,and the effects of tilt angles( 10° ~ 60°) and angular displacement amplitudes (0.25° ~ 5°) with a constant normal load are highlighted. Numerical results show that the contact pressure increases slightly with increasing the tilt angle and angular displacement. The Mises stress distribution is asymmetric at the contact surface and the thickness direction of the specimen. Moreover,as the tilt angle increases,it is demonstrated that the dual rotary fretting gradually changes from twisting fretting control to rotational fretting control.
引文
[1]WATERHOUSE R B.Fretting fatigue[M].London:Elsevier Applied Seienee,1981.
    [2]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2004.
    [3]ZHANG B,CAI Z,GAN X,et al.Dual motion fretting wear behaviors of titanium and its alloy in artificial saliva[J].Trans Nonferr Met Soc,2014,24:100-107.
    [4]李颖,张成成,高靖云,等.航空发动机钛合金材料的高周和超高周疲劳性能研究[J].力学与实践,2016,38(3):250-254.
    [5]于志辉,寇艳娜,汪夏燕,等.多孔硅/硅钛合金的制备及在锂离子电池负极上的应用[J].功能材料,2016,47(1):1017-1022.
    [6]易湘斌,焦爱胜,常文春,等.不同冷却润滑条件下TB6钛合金高速铣削切削力实验研究[J].润滑与密封,2017,42(9):92-97.
    [7]MO J L,ZHU M H,ZHENG J F,et al.Study on rotational fretting wear of 7075 aluminumalloy[J].Tribol Int,2010,43:912-917.
    [8]BRISCOE B,CHATEAUMINOIS A,LINDLEY T,et al.Fretting wear behaviour of polymethylmethacrylate under linear motions and torsional contact conditions[J].Tribol Int,1998,31:701-711.
    [9]ZHOU Y,SHEN M X,CAI Z B,et al.Study on dual rotary fretting wear behavior of Ti6Al4V titanium alloy[J].Wear,2017,376/377:670-679.
    [10]沈明学,谢兴源,蔡振兵,等.扭转复合微动模拟及其试验研究[J].机械工程学报,2011,47(15):89-94.
    [11]SHEN M X,XIE X Y,CAI Z B,et al.An experiment investigation on dual rotary fretting of medium carbon steel[J].Wear,2011,217:1504-1514.
    [12]LIU J,SHEN H M,YANG Y R.Finite element implement-tation of a varied friction model applied totorsional freting wear[J].Wear,2014,314:220-227.
    [13]ZHANG X,SHEN H M,LIU J,et al.An efficient numerical model for predicting the torsional fretting wear considering real rough surface[J].Wear,2015,344/345:32-45.
    [14]孙浩.PP塑料/GCr15钢转动微动实验及数值模拟研究[D].成都:西南交通大学,2009.
    [15]宦臣茂,沈明学,宋川,等.扭转复合微动的数值模拟[J].润滑与密封,2011,36(10):9-14.
    [16]惠旭龙,牟让科,白春玉.TC4钛合金动态力学性能及本构模型研究[J].振动与冲击,2016,35(22)161
    [17]JOHNSON K L.Contactmechanics[M].Cambridge:Cambridge University Press,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700