鹿茸草中3种苯乙醇苷的分离制备工艺研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Separation process of three phenolic glycosides from Monochasma savatieri
  • 作者:崔言坤 ; 杨世林 ; 许琼明 ; 李笑然 ; 张苏 ; 高红伟 ; 李冀
  • 英文作者:CUI Yan-kun;YANG Shi-lin;XU Qiong-ming;LI Xiao-ran;ZHANG Su;GAO Hong-wei;LI Ji;Heilongjiang University of Chinese Medicine;College of Pharmaceutical Science,Soochow University;State Key Laboratory of Quality Research in Chinese Medicine,Institute of Chinese Medicine,Institute of Chinese Medical Sciences,University of Macau;
  • 关键词:鹿茸草 ; 苯乙醇苷 ; 大孔树脂 ; 动态轴向分离 ; 麦角甾苷 ; 异麦角甾苷 ; torenoside ; B
  • 英文关键词:Monochasma savatieri Franch.;;phenylethanoid glycosides;;adsorption resins;;dynamic axial column;;acteoside;;isoacteoside;;torenoside B
  • 中文刊名:ZCYO
  • 英文刊名:Chinese Traditional and Herbal Drugs
  • 机构:黑龙江中医药大学;苏州大学药学院;澳门大学中华医药研究所;
  • 出版日期:2017-01-28
  • 出版单位:中草药
  • 年:2017
  • 期:v.48;No.589
  • 语种:中文;
  • 页:ZCYO201702017
  • 页数:6
  • CN:02
  • ISSN:12-1108/R
  • 分类号:73-78
摘要
目的利用大孔吸附树脂以及动态轴向分离技术,建立鹿茸草Monochasma savatieri中3种苯乙醇苷类化合物麦角甾苷(acteoside)、异麦角甾苷(isoacteoside)、torenoside B的最佳分离制备工艺。方法通过静态吸附与解吸附实验和动态分离实验,研究8种常用大孔树脂AB-8、D101、HPD100、LSA-10、LX-11、LX-17、LX-38、XDA-6对该类化合物的分离特性,选出最佳大孔树脂类型;采用所选最佳大孔树脂对3种苯乙醇苷类化合物的纯化工艺参数进行优化。经放大实验得到总苯乙醇苷,再经动态轴向分离得到3种苯乙醇苷类化合物单体。结果优化出的最理想大孔树脂为LX-17;优选的最佳上样质量浓度为原药材1.8 g/m L;最佳吸附时间为150 min;洗脱条件为乙醇-水系统,体积流量为2.5 m L/min,梯度浓度依次为纯水(4 BV)、15%乙醇(4 BV)、60%乙醇(5 BV)以及90%乙醇(2 BV);随后放大10倍进行中试,得到总苯乙醇苷部位,得率为5.25%,其中麦角甾苷15.24%、异麦角甾苷32.14%、torenoside B 29.33%;5 g总苯乙醇苷部位经动态轴向压缩制备柱纯化出3种苯乙醇苷单体成分,分别为麦角甾苷0.127 g,得率2.54%,质量分数为92%;异麦角甾苷0.894 g,得率17.88%,质量分数为95%;torenoside B 0.962 g,得率19.24%,质量分数为98%。结论 LX-17型大孔树脂可作为纯化苯乙醇苷的较佳分离材料,经过优化的分离工艺稳定可靠,有望在工业化生产中推广应用。
        Objective The optimal simultaneous separation process of three phenylethanoid glycosides(acteoside, isoacteoside, and torenoside B) from Monochasma savatieri were established using of macrophage resins and dynamic axial column(DAC). Methods The adsorption/desorption experiments and dynamic separation experiments were performed on eight types of resins(AB-8, D 101, HPD 100, LSA-10, LX-11, LX-17, LX-38, and XDA-6) to find the optimal resin. Then the optimal separation parameters were investigated on the chosen resin. The total phenylethanoid glycosides obtained from the large-scale experiment were further seperated to get acteoside, isoacteoside, and torenoside B, respectively using of DAC system. Results Among these candidate resins, LX-17 was chosen to further obtain the optimal parameters: The optimal feeding concentration of raw materials was 1.8 g/m L; The optimal adsorption time was 150 min; The optimal gradient elute conditions were ethanol/water(0/100, 4 BV; 15/85, 4 BV; 60/40, 5 BV; 90/10, 2 BV). The large-scale experiments were amplified to 10 folds on the basis of optimal parameters to obtain total phenylethanoid glycosides. Acteoside, isoacteoside, and torenoside B were simultaneously obtained from total phenylethanoid glycosides using DAC system. Conclusion LX-17 and DAC system can be used for the purification of phenylethanoid glycosides, which will have a good future for the application in industry.
引文
[1]潘丽,申琳.肠炎宁颗粒治疗小儿消化不良的临床观察[J].中草药,2016,47(12):2147-2151.
    [2]肖培根.新编中药志(一)[M].北京:化学工业出版社,2001.
    [3]国家中医药管理局《中华本草》编委会.中华本草(上册)[M].上海:上海科技出版社,1998.
    [4]Zheng W,Tan X Q,Guo L J,et al.Chemical constituents from Monochasma savatieri[J].Chin J Nat Med,2012,10(2):102-104.
    [5]师梦凡.鹿茸草中苯乙醇苷类化学成分的心肌保护作用研究[D].苏州:苏州大学,2013.
    [6]朱莹莹.鹿茸草中苯乙醇苷的分离制备及抗菌活性研究[D].苏州:苏州大学,2013.
    [7]Li M,Shi M F,Liu Y L,et al.Phenylethanoid glycosides from Monochasma savatieri and their anticomplement activity through the classical pathway[J].Planta Med,2012,78(12):1381-1386.
    [8]Jiménez C,Riguera R.Phenylethanoid glycosides in plants:Structure and biological activity[J].Nat Prod Rep,1995,11(6):591-606.
    [9]Pan J,Yuan C S,Lin C J,et al.Pharmacological activities and mechanisms of natural phenylpropanoid glycosides[J].Pharmazie,2003,58(11):767-775.
    [10]Noel J P,Austin M B,Bomat E K.Structure-function relationships in plant phenylpropanoid biosynthesis[J].Curr Opin Plant Biol,2005,8(3):249-253.
    [11]Li C Q,Li B G,Qi H Y,et al.Three cyclooctapeptides and one glycoside from Microtoena prainiana[J].J Nat Prod,2004,67(6):978-982.
    [12]曹馨元,冯霞,李茂星,等.甘肃马先蒿毛蕊花糖苷和异毛蕊花糖苷制备工艺研究[J].中草药,2016,47(10):1696-1701.
    [13]崔翰明,张秋燕,林海,等.三七总皂苷的大孔吸附树脂纯化工艺和质量分析研究[J].中草药,2012,43(11):2177-2182.
    [14]贾存勤,李阳春,屠鹏飞,等.HPD系列大孔吸附树脂预处理方法研究[J].中国中药杂志,2005,30(18):1425-1427.
    [15]孙宗喜,徐桂花,李艳芳,等.大孔树脂纯化绵茵陈中总有机酸和绿原酸的研究[J].中药材,2012,35(2):306-310.
    [16]Sun Y,Yuan H Y,Hao L L,et al.Enrichment and antioxidant properties of flavone C-glycosides from trollflowers using macroporous resin[J].Food Chem,2013,141(1):533-541.
    [17]Dong Y,Zhao M M,Sun-Waterhouse D X,et al.Absorption and desorption behaviour of the flavonoids from Glycyrrhiza glabra L.leaf on macroporous adsorption resins[J].Food Chem,2015,168:538-545.
    [18]Liu B Y,Ouyang J,Yuan X F,et al.Adsorption properties and preparative separation of phenylethanoid glycosides from Cistanche deserticola by use of macroporous resins[J].J Chromatogr B,2013,937:84-90.
    [19]Sun Y,Yuan H Y,Hao L L,et al.Enrichment and antioxidant properties of flavone C-glycosides from trollflowers using macroporous resin[J].Food Chem,2013,141(1):533-541.
    [20]Wang L,Xu Q,Su S,et al.Simultaneous purification of pulchinenoside B-4 and B-5 from Pulsatilla chinensis using macroporous resin and preparative high performance liquid chromatography[J].Ind Eng Chem Res,2012,51(45):14859-14866.
    [21]Sakuma S,Motomura H.Purification of saikosaponin-a,saikosaponin-C and saikosaponin-D-application of large-scale reversed-phase high-performance liquidchromatography[J].J Chromatogr A,1987,400:293-295.
    [22]Medina I.Purification of zopiclone by preparative high performance liquid chromatography[J].J Liq Chromatogr R T,1998,21(17):2689-2698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700