光子计数激光测深系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photon counting laser bathymetry system
  • 作者:张河辉 ; 丁宇星 ; 黄庚华
  • 英文作者:Zhang Hehui;Ding Yuxing;Huang Genghua;Key Laboratory of Space Active Opto-electronics Technology, Shanghai Institute of Technical Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:激光雷达 ; 激光测深 ; 光子计数 ; 单光子
  • 英文关键词:lidar;;laser bathymetry;;photon counting;;single photon
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国科学院上海技术物理研究所空间主动光电技术重点实验室;中国科学院大学;
  • 出版日期:2018-10-16 08:58
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.291
  • 基金:上海市科学技术委员会科研计划(17DZ1204900)
  • 语种:中文;
  • 页:HWYJ201901016
  • 页数:5
  • CN:01
  • ISSN:12-1261/TN
  • 分类号:100-104
摘要
设计了一套基于光子计数探测体制的激光雷达水深探测系统,该系统工作波长为532 nm,单脉冲激光能量为0.5μJ,脉冲宽度为400 ps,激光重频为10 kHz,单光子探测器死时间为22 ns,时间间隔分辨率为50 ps。首先介绍了光子计数探测体制激光雷达用于水深探测的基本原理及其相对于传统机载激光测深雷达的优越性;然后分析了水底回波信号产生的平均光电子数与系统单脉冲激光能量的关系,从而理论求取出该系统的极限测深能力为3.7 m左右。最后进行了外场实地试验,对所获激光雷达点云数据进行滤波和解算,成功测得了透明盘深度为1.2 m的浑浊水体深度为2 m以内的水下信息。
        A single wavelength(532 nm), short-pulse(400 ps), low pulse energy(0.5 μJ), high pulse repetition rate(10 kHz), short dead time of detector(22 ns) and high resolution of time interval(50 ps)photon counting laser bathymetry system was designed. The principle of photon counting laser bathymetry and its superiority to the typical airborne laser bathymetry was introduced. The relationship between the average number of photoelectrons generated at the receiver and the transmitted laser pulse energy was analyzed, indicating that the bathymetry capability of the system was about 3.7 m. Experiments were conducted in a pond with a Secchi depth of 1.2 meters, and the underwater information down to 2 m depths were successfully obtained by filtering and solving the point cloud data.
引文
[1] Stoker J M, Abdullah Q A, Nayegandhi A, et al. Evaluation of single photon and Geiger mode Lidar for the 3D Elevation Program[J]. Remote Sensing, 2016, 8(9):767.
    [2] Swatantran A, Tang H, Barrett T, et al. Rapid, highresolution forest structure and terrain mapping over large areas using single photon lidar[J]. Scientific Reports, 2016,6:28277.
    [3] Li Q, Degnan J, Barrett T, et al. First evaluation on single photon-sensitive lidar data[J]. Photogramm Eng Remote Sens, 2016, 82:455-463.
    [4]翟国君,吴太旗,欧阳永忠,等.机载激光测深技术研究进展[J].海洋测绘, 2012, 32(2):67-71.
    [5] Yao Chunhua, Chen Weibiao, Zang Huaguo, et al. Accurate measurement of sea surface in an airborne laser bathymetry[J]. Infrared and Laser Engineering, 2003, 32(4):351-355.(in Chinese)姚春华,陈卫标,臧华国,等.机载激光测深系统中的精确海表测量[J].红外与激光工程, 2003, 32(4):351-355.
    [6] Shrestha K Y, Carter W E, Slatton K C, et al. Shallow bathymetric mapping via multistop single photoelectron sensitivity laser ranging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11):4771-4790.
    [7] Axelsson A. Rapid topographic and bathymetric reconnaissance using airborne LiDAR[C]//SPIE, 2010, 7835:783503.
    [8]侯利冰,黄庚华,况耀武,等.光子计数激光测距技术研究[J].科学技术与工程, 2013, 13(18):5186-5190.
    [9] Cossio T, Slatton K C, Carter W, et al. Predicting topographic and bathymetric measurement performance for low-SNR airborne lidar[J]. IEEE Transactions on Geoscience&Remote Sensing, 2009, 47(7):2298-2315.
    [10] Harding D, Dabney P, Valett S, et al. Airborne polarimetric,two-color laser altimeter measurements of lake ice cover:A pathfinder for NASA′s ICESat-2 spaceflight mission[C]//Geoscience and Remote Sensing Symposium. IEEE, 2011:3598-3601.
    [11] Hou Libing. Research on key technologies of photon counting imaging lidar in moving conditions[D]. Beijing:University of Chinese Academy of Sciences, 2013.(in Chinese)侯利冰.运动平台条件下光子计数激光成像雷达关键技术研究[D].北京:中国科学院大学, 2013.
    [12] Degnan J J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping[J]. Remote Sensing, 2016, 8(11):958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700