黄河河南段水体中正构烷烃的分布特征与来源解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristics and Source Apportionment of n-Alkanes in Water from Yellow River in Henan Section
  • 作者:冯精兰 ; 席楠楠 ; 张飞 ; 刘书卉 ; 孙剑辉
  • 英文作者:FENG Jing-lan;XI Nan-nan;ZHANG Fei;LIU Shu-hui;SUN Jian-hui;Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control,Ministry of Education,Henan Key Laboratory for Environmental Pollution Control,School of Environment,Henan Normal University;
  • 关键词:黄河河南段 ; 正构烷烃 ; 分布特征 ; 特征参数 ; 来源分析
  • 英文关键词:Yellow River in Henan section;;n-alkanes;;distribution;;characteristic parameters;;source analysis
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:河南师范大学环境学院黄淮水环境污染防治省部共建教育部重点实验室河南省环境污染控制重点实验室;
  • 出版日期:2016-02-26 15:36
  • 出版单位:环境科学
  • 年:2016
  • 期:v.37
  • 基金:国家自然科学基金项目(41103071);; 河南省高等学校科技创新人才支持计划项目(14HASTIT049);; 河南省创新型科技人才队伍建设工程项目;; 河南省科技创新人才计划项目(134200510014)
  • 语种:中文;
  • 页:HJKZ201603016
  • 页数:7
  • CN:03
  • ISSN:11-1895/X
  • 分类号:107-113
摘要
本研究于2010年8月采集黄河河南段26个表层水及悬浮颗粒物样品,采用气相色谱-质谱联用仪(GC-MS)测定22种正构烷烃(C_(14)~C_(36))的含量,分析其组成特征,并利用特征参数解析其来源.结果表明,黄河河南段水相中正构烷烃浓度为521~5 843 ng·L~(-1),平均浓度为1 409 ng·L~(-1),组成特征以C_(25)为主峰碳的高碳单峰型.悬浮颗粒相中正构烷烃浓度范围为463~11 142 ng·L~(-1),平均浓度为1 951 ng·L~(-1),组成特征表现为双峰型,C_(25)为主峰碳的高碳烃占优势,同时存在低碳峰.多特征参数OEP、CPI、%Wax C_n以及TAR表明,黄河河南段水相及悬浮颗粒物中正构烷烃主要来源于化石燃料的燃烧,同时存在陆生植物来源.
        To investigate the distributions and possible sources of n-alkanes in water and suspended particulate matter from Yellow River in Henan section,26 water and suspended particulate matter samples were collected in August 2010 and 22 n-alkanes( C_(14)-C_(36))were quantitatively determined by gas chromatography-mass spectrometer( GC-MS). Potential sources of n-alkanes were analyzed using different characteristic parameters. The results indicated that total concentrations of 22 n-alkanes were 521-5 843 ng·L~(-1)with a mean concentration of 1 409 ng·L~(-1),while the total amounts of n-alkanes in the suspended particulate matter were 463-11 142 ng·L~(-1)with a mean value of 1 951 ng·L~(-1). The composition profiles of n-alkanes in water showed unimodal distribution with a peak at C_(25) in water.However,the composition characteristics of n-alkanes in SPM were of bimodal type,but still with the advantage of high carbon hydrocarbons peak at C_(25). Results of characteristic parameters including CPI,TAR,OEP and % Wax C_nshowed that n-alkanes in the studied area were derived mainly from combustion of fossil fuel,while terrestrial higher plant played a role in the existence of n-alkanes in water and suspended particulate matter from Yellow River in Henan section.
引文
[1]卢冰,周怀阳,陈荣华,等.北极现代沉积物中正构烷烃的分子组合特征及其与不同纬度的海域对比[J].极地研究,2004,16(4):281-294.
    [2]Blyth A J,Asrat A,Baker A,et al.A new approach to detecting vegetation and land-use change using high-resolution lipid biomarker records in stalagmites[J].Quaternary Research,2007,68(3):314-324.
    [3]Xing L,Zhao M X,Gao W X,et al.Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea[J].Organic Geochemistry,2014,76:72-81.
    [4]Baxter C S,Miller M L.Mechanism of mouse skin tumor promotion by n-dodecane[J].Carcinogenesis,1987,8(12):1787-1790.
    [5]Horton A W,Denman D T,Trosset R P.Carcinogenesis of the skin.Ⅱ.The accelerating properties of aliphatic and related hydrocarbons[J].Cancer Research,1957,17(8):758-766.
    [6]何奉朋,张枝焕,高丹丹.北京典型土壤剖面中饱和烃的组成及垂向分布特征[J].环境科学,2008,29(1):170-178.
    [7]Volkman J K,Holdsworth D G,Neill G P,et al.Identification of natural,anthropogenic and petroleum hydrocarbons in aquatic sediments[J].Science of the Total Environment,1992,112(2-3):203-219.
    [8]Gilde K,Pinckney J L.Sublethal effects of crude oil on the community structure of estuarine phytoplankton[J].Estuaries and Coasts,2012,35(3):853-861.
    [9]Bejarano A C,Chandler G T,He L,et al.Individual to population level effects of South Louisiana crude oil water accommodated hydrocarbon fraction(WAF)on a marine meiobenthic copepod[J].Journal of Experimental Marine Biology and Ecology,2006,332(1):49-59.
    [10]Ewa-Oboho I,Amu O.Effect of crude oil extracts on early stages of African catfish Heterobranchus longifilis(val.)reared under controlled condition[J].Global Journal of Environmental Sciences,2009,8(2):23-28.
    [11]Rodrigues R V,Miranda-Filho K C,Gusmo E P,et al.Deleterious effects of water-soluble fraction of petroleum,diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae[J].Science of the Total Environment,2010,408(9):2054-2059.
    [12]Pacheco M,Santos M A.Biotransformation,endocrine,and genetic responses of Anguilla anguilla L.to petroleum distillate products and environmentally contaminated waters[J].Ecotoxicology and Environmental Safety,2001,49(1):64-75.
    [13]Guillaud J F,Andrieux F,Menesguen A.Biogeochemical modelling in the Bay of Seine(France):an improvement by introducing phosphorus in nutrient cycles[J].Journal of Marine Systems,2000,25(3-4):369-386.
    [14]梁作兵,孙玉川,王尊波,等.重庆典型岩溶区地下河中溶解态正构烷烃、脂肪酸来源、迁移及转化[J].环境科学,2015,36(9):3212-3219.
    [15]Liu Z H,Dreybrodt W.Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J].Science Bulletin,2015,60(2):182-191.
    [16]Jiang Y J,Hu Y J,Schirmer M.Biogeochemical controls on daily cycling of hydrochemistry andδ13C of dissolved inorganic carbon in a karst spring-fed pool[J].Journal of Hydrology,2013,478:157-168.
    [17]Douglas E K,Dawson R.Marine organic chemistry:evolution,composition,interactions and chemistry of organic matter in seawater(Elsevier Oceanography Series:31)[M].Amsterdam:Elsevier Science Ltd,1981,513.
    [18]戚艳平,吴莹,张经,等.夏季长江口中颗粒态及溶解态正构烷烃的组成和迁移[J].环境科学学报,2006,26(8):1354-1361.
    [19]梁波,张凯,沈汝浪,等.珠江三角洲外围水体中正构烷烃的来源分析和通量估算:加强珠江上游区域生态环境保护的必要性[J].地球化学,2012,41(1):55-62.
    [20]Prahl F G,Ertel J R,Goni M A,et al.Terrestrial organic carbon contributions to sediments on the Washington margin[J].Geochimica et Cosmochimica Acta,1994,58(14):3035-3048.
    [21]Meyers P A.Organic geochemical proxies of paleoceanographic,paleolimnologic,and paleoclimatic processes[J].Organic Geochemistry,1997,27(5-6):213-250.
    [22]Okoh A I.Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants[J].Biotechnology and Molecular Biology Review,2006,1(2):38-50.
    [23]Sánez J,Froehner S,Falco F.Use of biomarkers indices in a sediment core to evaluate potential pollution sources in a subtropical reservoir in Brazil[J].Chemie der ErdeGeochemistry,2013,73(4):555-563.
    [24]LüX X,Zhai S K.Distributions and sources of organic biomarkers in surface sediments from the Changjiang(Yangtze River)Estuary,China[J].Continental Shelf Research,2006,26(1):1-14.
    [25]李杏茹,杜熙强,王英锋,等.保定市大气气溶胶中正构烷烃的污染水平及来源识别[J].环境科学,2013,34(2):441-447.
    [26]Bourbonniere R A,Meyers P A.Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie[J].Limnology and Oceanography,1996,41(2):352-359.
    [27]Wang N,Zong Y Q,Brodie C R,et al.An examination of the fidelity of n-alkanes as a palaeoclimate proxy from sediments of Palaeolake Tianyang,South China[J].Quaternary International,2014,333:100-109.
    [28]罗宪婴,赵宗举,孟元林.正构烷烃奇偶优势在油源对比中的应用——以塔里木盆地下古生界为例[J].石油实验地质,2007,29(1):74-77.
    [29]Kavouras I G,Stephanou E G.Particle size distribution of organic primary and secondary aerosol constituents in urban,background marine,and forest atmosphere[J].Journal of Geophysical Research,2002,107(D8):AAC 7-1-AAC 7-12.
    [30]Feng J L,Li X Y,Guo W,et al.Potential source apportionment of polycyclic aromatic hydrocarbons in surface sediments from the middle and lower reaches of the Yellow River,China[J].Environmental Science and Pollution Research,2014,21(9):11447-11456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700