滇西北拉巴燕山晚期花岗岩岩石成因及其成矿指示——黑云母和角闪石矿物化学证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogenesis of the late Yanshanian Laba granite in northwestern Yunnan Province and its metallogenic implications: Evidence from mineral chemistry of biotites and amphiboles
  • 作者:向坤 ; 薛传东 ; 谢志鹏 ; 来瑞娟
  • 英文作者:XIANG Kun;XUE Chuan-dong;XIE Zhi-peng;LAI Rui-juan;Department of Earth Sciences, Kunming University of Science and Technology;
  • 关键词:斑状花岗岩 ; 黑云母 ; 角闪石 ; 成矿效应 ; 拉巴钼(-铜)-多金属矿床 ; 滇西北
  • 英文关键词:porphyritic granite;;biotite;;amphibole;;metallogenic implication;;Laba Mo(-Cu)-polymetallic deposit;;northwestern Yunnan Province
  • 中文刊名:YSKW
  • 英文刊名:Acta Petrologica et Mineralogica
  • 机构:昆明理工大学地球科学系;
  • 出版日期:2018-12-14 18:04
  • 出版单位:岩石矿物学杂志
  • 年:2019
  • 期:v.38;No.177
  • 基金:国家重点研发计划(2016YFC06003);; 国家自然科学基金项目(41373049,40772067)~~
  • 语种:中文;
  • 页:YSKW201901003
  • 页数:13
  • CN:01
  • ISSN:11-1966/P
  • 分类号:36-48
摘要
在滇西北香格里拉拉巴地区,近年通过钻探新发现了燕山晚期花岗岩体及伴生的超大型钼(-铜)-多金属矿床。调查发现,岩浆成因黑云母和角闪石记录了其形成时的岩浆温度、压力、氧逸度以及物质来源等岩石成因信息,这些物理化学条件制约了成矿元素在熔体相与流体相之间的分配,成为约束岩浆过程、岩石成因及成矿机制的重要因素。本文对拉巴矿区花岗岩中黑云母和角闪石进行了详细的矿相学和成分分析,据此厘定了岩石形成的物理化学条件,探讨其岩石成因及成矿效应。结果显示,花岗岩中黑云母的Fe2+/(Fe2++Mg)值较为均一,具有无钙或贫钙的特点,Ti阳离子数为0. 31~0. 52,属于岩浆成因;角闪石的Si阳离子数为6. 68~7. 20,Ti阳离子数为0. 09~0. 13,属于岩浆成因;计算获得岩浆结晶温度为705~903℃,结晶压力为59~449 MPa,侵位深度为2. 2~17. 0 km。黑云母和角闪石的矿物化学特征指示,寄主花岗岩体为I型花岗岩,具有幔源物质参与特点,形成于较高的氧逸度环境中;黑云母的卤族元素(F、Cl)含量为0. 17%~0. 58%,指示岩浆出溶流体为富含F、Cl的流体,利于Mo、Cu等元素的富集成矿,暗示本区具有很大的成矿潜力。
        The late Yanshanian Laba porphyritic granite,associated with a superlarge Mo(-Cu)-polymetallic deposit,was recently identified by drilling exploration in Shangrila area of northwestern Yunnan Province. The magmatic biotites and amphiboles have recorded the detailed petrogenesis information including the temperature,pressure,oxygen fugacity,and the source origin of the parent magma. The authors investigated the mineralogical composition of the biotites and amphiboles in the porphyritic granite from the Laba Mo(-Cu) deposit,and constrained the physico-chemical conditions of the ore-bearing magmatic rocks as well as the metallogenic potential. Electron microprobe analyses(EMPA) show that the biotites have uniform Fe2 +/(Fe2 ++ Mg) values,without or with minor CaO,and the Ti cation number is 0. 31 ~ 0. 52,indicating that they are of magmatic origin. The Si,Ti cation numbers of the amphiboles are 6. 68 ~ 7. 20 and 0. 09 ~ 0. 13 respectively, indicating that they are also of magmatic origin. The authors have reached the conclusion that the formation temperature, pressure and depth of the porphyritic granite are 705 ~ 903℃, 59 ~ 449 MPa and 2. 2 ~ 17. 0 km respectively. The features of mineral geochemistry of the biotites and amphiboles suggest that the porphyritic granite belongs to the I-type granite with the addition of mantle-derived materials, and was formed in an environment with high oxygen fugacity. The values of F and Cl in the biotites are 0. 17% ~ 0. 58%, showing that the fluids exsolved from the granitic magmas were rich in F and Cl,which was beneficial for enrichment and mineralization of Mo and Cu. These results shed light on the correlation between the rock-forming and ore-forming processes for the superlarge Laba Mo(-Cu)-polymetallic deposit. Meanwhile, they also indicate that the Laba orefield has a giant potential for future exploration.
引文
Abdel-Rahman A M.1994.Nature of biotites from alkaline,calc-alkaline and peralum magmas[J].Journal of Petrology,35:525~541.
    Albuquerque A C.1973.Geochemistry of biotites from granitic rocks,northern Portugal[J].Geochimica et Cosmochimica Acta,37:1 779~1 802.
    Bao Bo,Zhao Bo,Zhang Dehui,et al.2014.The behavior of chlorine in the evolution of magmatic-hydrothermal system[J].Bulletn of Mineralogy,Petrology and Geochemistry,33(4):540~547(in Chinese).
    Burchfiel B C and Chen Z L.2012.Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland[M].Geological Society of America Memoir 210,9~62.
    Dingwell D B.1988.The structures and properties of fluorine-rich magmas:A review of experimental studies[A].Taylor R P and Strong DF.Recent Advances in the Geology of Granite-Related Mineral Deposits[C].Quebec:Canadian Institute of Mining and Metallurgy,1~12.
    Henry D J,Guidotti C V and Thomson J A.2005.The Ti-saturation surface for low-to medium-pressure metapleitic biotites:Implications for geothermomtery and Ti-substitution mechanisms[J].American Mineralogist,90(2~3):316~328.
    Hou Z Q,Zheng Y C,Yang Z M,et al.2013.Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J].Mineralium Deposita,48:173~192.
    Jiang C Y and An S Y.1984.On chemical characteristics of calcic amphiboles from igneous rocks and their petrogensis significance[J].Journal of Mineralogy and Petrology,3:1~9.
    Kang Zhiqiang,Feng Zuohai and Wang Rui.1994.Reliability comparison of Al-in-hornblende and biotite barometer:A case study of Guposhan-Huashan granite in north Guangxi[J].Journal of Guilin University of Technology,30(4):474~479(in Chinese).
    Kepper H and Wyllie P J.1991.Partitioning of Cu,Sn,Mo,W,U and Th between melt and aqueous fluid in the system haplogranite H2O-HCl and haplogranite H2O-HF[J].Contribution to Mineralogy and Petrology,109:139~150.
    Kumar S and Pathak M.2010.Mineralogy and geochemistry of biotites from Proterozoic granitiods of western Arunachal Himalaya:Evidence of bimodal granitogeny and tectonic affinity[J].Journal of Geological Society of India,75(5):715~730.
    Leake B E,Woolley A R,Arps C E S,et al.1997.Nomenclature of amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association,Commission on New Minerals and Mineral Names[J].American Mineralogist,82:1 019~1 037.
    Li Hongli,Bi Xianwu,Tu Guangchi,et al.2007.Mineral chemistry of biotite from Yanbei pluton:Implication for Sn-metallogeny[J].Journal of Mineralogy and Petrology,27(3):49~54(in Chinese).
    Li W C,Yu H J,Gao X,et al.2017.Review of Mesozoic multiple magmatism and porphyry Cu-Mo(W)mineralization in the Yidun Arc,eastern Tibet Plateau[J].Ore Geology Reviews,90:795~812.
    Li Wenchang,Yu Haijun,Yin Guanghou,et al.2012.Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in northwest Yunnan and its metallogenic environment[J].Mineral Deposits,31(2):282~292(in Chinese).
    Lin Wenwei and Peng Lijun.1994.The estimation of Fe3+and Fe2+contents in amphibole and biotite from MEMP data[J].Journal of Changchun University of Earth Sciences,24(2):155~162(in Chinese).
    Linnen R L,Pichavant M and Holtz F.1996.The combined effects of fO2and melt composition on SnO2solubility and tin diffusivity in haplogranitic melts[J].Geochimica et Cosmochimica Acta,60(24):4 965~4 976.
    Liu Xuelong,Li Wenchang and Yin Guanghou.2013.The indosinian crust uplift-denudation in Geza arc of Yunnan Province and its geological significance:Evidence from biotitie geobarometer[J].Geoscience,27(3):537~546,628(in Chinese).
    Liu Wei.2001.The role of magmatic fluid in the ore-formation of hydrothermal deposits[J].Earth Science Frontiers,8(3):203~215(in Chinese).
    Ma Changqian,Yang Kunguang,Tang Zhonghua,et al.1994.Granite and Magmatic Kinetics-Theoretical Method and Case Study on the Edong Granite[M].Wuhan:China University of Geosciences Press,210~212(in Chinese).
    Ma Runze,Xiao Yuanfu,Wei Xiangui,et al.1997.Reasearch on the geochemical property and gensis of basic and ultrabasic rocks of Jinning Preiod in the Mocangshan area,Sichuan Province[J].Journal of Mineralogy and Petrology,S1:38~50(in Chinese).
    Manning D A C and Henderson P.1984.The behavior of tungsten in granite melt vapour systems[J].Contribution to Mineralogy and Petrology,86:286~293.
    Munoz J Z.1992.Calculation of HF and HCl fugacities from biotite compositions:Revised equations[J].Geological Society of America Abstract Programs,24:A221.
    O’Neill H St C and Pownceby M L.1993.Thermodynamic data from redox reactions at high temperatures.I.An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes,with revised values for the Fe-“Fe O”,Co-CoO,NiNi O,and Cu-Cu2O oxygen buffers,and new data for the W-WO2buffer[J].Contributions to Mineralogy and Petrology,114:296~314.
    Railsback L B.2003.An earth scientist’s periodic table of the elements and their ions[J].Geology,31(9):737~740.
    Reid A J,Wilson C J L,Shun L,et al.2007.Mesozoic plutons of the Yidun Arc,SW China:U/Pb geochronology and Hf isotopic signature[J].Ore Geology Reviews,31:88~106.
    Ridolfi F,Renzulli A and Puerini M.2010.Stability and chemical equilibrium of amphibole in calc-alkaline magmas:An overview,new thermobarometric formulations and application to subduction-related volcanoes[J].Contributions to Mineralogy and Petrology,160:45~66.
    Rieder M,Cavazzini G,D’yakonov,et al.1998.Nomenclature of the micas[J].The Canadian Mineralogist,36(3):905~912.
    Sato K.2012.Sedimentary crust and metallogeny of granitiod affinity:Implication from the geotectonic histories of Circun-Japan sea region,central Andes and Southeastern Australia[J].Resource Geology,62(4):329~351.
    Schmidt M W.1992.Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer[J].Contributions to Mineralogy and Petrology,110:304~310.
    Stemprok M.1990.Solubility of tin,tungsten and molybdenum oxides in felsic magmas[J].Mineralium Deposita,25(3):205~212.
    Stone D.2000.Temperature and pressure variations in suites of Archean felsic plutonic rocks,Berens River area,northwest Superior Province,Ontario,Canada[J].The Canadian Mineralogist,38(2):455~470.
    Uchida E,Endo S and Makino M.2007.Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J].Resource Geology,57(1):47~56.
    Wang Huan,Wang Jianping,Liu Jiajun,et al.2011.Mineralogy of the Xiba granitoid pluton in the southern Qinling orogenic belt and its implications for petrogenesis[J].Geoscience,25(3):489~502(in Chinese).
    Wang X S,Hu R Z,Bi X W,et al.2014.Petrogenesis of Late Cretaceous I-type granites in the southern Yidun terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos,208~209:202~219.
    Webster J D and Holloway J R.1990.Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas[J].The Geological Society of America Special Papers,246:21~34.
    Webster J D,Sintoni M F and De Vivo B.2009.The partitioning behavior of Cl,S,and H2O in aqueous vapor-±saline-liquid saturated phonolitic and trachytic melts at 200 MPa[J].Chemical Geology,263(1~4):19~36.
    Whalen J B and Chappell B W.1988.Opadue mineralogy and mafic mineral chemistry of I-type and S-type granites of Lachlan fold belt,southeast Australia[J].American Mineralogist,73(3):281~296.
    Wones D R and Eugster H P.1965.Stability of biotite:Experiment,theory and application[J].American Mineralogist,50:1 228~1 272.
    Xu Keqin and Tu Guangchi.1986.Relationship between Granitic Rocks and Mineralization[M].Nanjing:Science and Technology of Jiangsu Press,657(in Chinese).
    Yang L Q,Deng J,Dilek Y,et al.2016.Melt source and evolution of I-type granitoids in the SE Tibetan Plateau:Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics[J].Lithos,245:258~273.
    Yang L Q,Deng J,Gao X,et al.2017.Timing of formation and origin of the Tongchanggou porphyry-skarn deposit:Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane,SE Tibetan Plateau[J].Ore Geology Reviews,81:1 015~1 032.
    Yang T N,Ding Y,Zhang H R,et al.2014.Two-phase subduction and subsequent continent-continent collision defines the Paleotethyan tectonics of northeast Tibet:Evidence from zircon U-Pb dating,geochemistry,and structural geology of the Sanjiang belt,southwest China[J].Geological Society of America Bulletin,126(11~12):164~168.
    Yu Haijun,Li Wenchang,Yin Guanghou,et al.2015.Geochronology,geochemistry and geological significance of the intrusion from the Tongchanggou Mo-Cu deposit,northwestern Yunnan[J].Acta Petrologica Sinica,31(11):3 217~3 233(in Chinese).
    Zhang Dehui,Zhang Wenhuai and Xu Guojian.2001.Exsolution and evolution of magmatic-hydrothermal fluids and their constrains on the porphyry ore-forming system[J].Earth Science Frontiers,8(3):193~202(in Chinese).
    Zhang Dehui,Zhang Wenhuai and Xu Guojian.2004.The ore fluid geochemistry of F-rich silicate melt-hydrous fluid system and its metallogeny:The current status and problems[J].Earth Science Frontiers,11(2):479~490(in Chinese).
    Zhao Bo,Zhang Dehui,Zhang Rongzhen,et al.2015.The progress of geochemical properties and metallogenic effect of F-rich silicate meltsolution fluid system[J].Chinese Journal of Geology,50(1):222~240(in Chinese).
    Zhou Zuoxia.1986.The origin of intrusive mass in Fengshandong,Hubei Province[J].Acta Petrologica Sinica,2(1):59~70(in Chinese).
    鲍波,赵博,张德会,等.2014.氯在岩浆-热液系统演化过程中的行为[J].矿物岩石地球化学通报,33(4):540~547.
    康志强,冯佐海,王睿.1994.角闪石黑云母全铝压力计的可靠性对比---以广西姑婆山-花山花岗岩为例[J].桂林理工大学学报,30(4):474~479.
    姜常义,安三元.1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J].矿物岩石,3:1~9.
    李鸿莉,毕献武,涂光炽,等.2007.岩背花岗岩黑云母矿物化学研究及其对成矿意义的指示[J].矿物岩石,27(3):49~54.
    李文昌,余海军,尹光侯,等.2012.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J].矿床地质,31(2):282~292.
    林文蔚,彭丽君.1994.由电子探针分析数据估算角闪石、黑云母中Fe3+、Fe2+[J].长春地质学院学报,24(2):155~162.
    刘学龙,李文昌,尹光侯.2013.云南格咱岛弧印支期地壳隆升与剥蚀及其地质意义:来自黑云母矿物压力计的证据[J].现代地质,27(3):537~546,628.
    刘伟.2001.岩浆流体在热液矿床形成中的作用[J].地学前缘,8(3):203~215.
    马昌前,杨坤光,唐仲华,等.1994.花岗岩类与岩浆动力学理论方法及鄂东花岗岩类例析[M].武汉:中国地质大学出版社,210~212.
    马润泽,肖渊甫,魏显贵,等.1997.四川米仓山地区晋宁期基性超基性岩地球化学性质及其成因研究[J].矿物岩石,S1:38~50.
    汪欢,王建平,刘家军,等.2011.南秦岭西坝花岗质岩体矿物学特征及成岩意义[J].现代地质,25(3):489~502.
    徐克勤,涂光炽.1986.花岗岩地质和成矿关系[M].南京:江苏科学技术出版社,657.
    余海军,李文昌,尹光侯,等.2015.滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J].岩石学报,31(11):3 217~3 233.
    张德会,张文淮,许国建.2001.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J].地学前缘,8(3):193~202.
    张德会,张文淮,许国建.2004.富F熔体-溶液体系流体地球化学及其成矿效应---研究现状及存在问题[J].地学前缘,11(2):479~490.
    赵博,张德会,张荣臻,等.2015.富F熔体-溶液流体体系的地球化学性状及成矿效应研究进展[J].地质科学,50(1):222~240.
    周作侠.1986.湖北丰山洞岩体成因探讨[J].岩石学报,2(1):59~70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700