CO_2腐蚀油井水泥石的控制机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in controlling mechanism and anti-corrosion technology of CO_2 corrosion onoilwell cement
  • 作者:胡小康 ; 闫秋艳 ; 董其鲁 ; 李成格尔
  • 英文作者:HU Xiao-kang;YAN Qiu-yan;DONG Qi-lu;LI Cheng-Geer;Northeast Petroleum University;
  • 关键词:CO_2 ; 水泥石 ; 腐蚀 ; 控制机制 ; 扩散 ; 动力学反应
  • 英文关键词:CO_2;;cement;;corrosion;;controlling mechanism;;diffusion;;kinetic reaction
  • 中文刊名:NMSH
  • 英文刊名:Inner Mongolia Petrochemical Industry
  • 机构:东北石油大学;
  • 出版日期:2019-01-30
  • 出版单位:内蒙古石油化工
  • 年:2019
  • 期:v.45;No.349
  • 基金:国家大学生创新创业训练计划项目(201810220014)
  • 语种:中文;
  • 页:NMSH201901003
  • 页数:7
  • CN:01
  • ISSN:15-1156/TQ
  • 分类号:11-17
摘要
对CO_2腐蚀油井水泥石控制机制的准确认识,是有针对性的进行防腐蚀设计、水泥环完整性评价和补救措施制订的基本依据。首先介绍了CO_2对油井水泥石的腐蚀机理,分析了CO_2与油井水泥石组分的反应过程,然后重点总结了扩散效应和动力学反应对CO_2腐蚀油井水泥石的控制机制。
        For anti-corrosion design and integrity evaluation for cement sheath,and the remedial measures after cement's corroded,the controlling mechanism of CO_2 corrosion on cement is the critical theoretical basis.This paper proposed the corrosion mechanism of cement sheath,and analyzed the reaction process between CO_2 and components of oil well cement.On the above basis,there was an emphasis on the controlling mechanism of CO_2 corrosion to oil well cement under the effect of kinetic reaction and diffusion
引文
[1] 姚晓. 二氧化碳对油井水泥石的腐蚀及其防护措施[J]. 钻井液与完井液,1998,15(1):8-12.
    [2] 程小伟,龙丹,王升正,等. CO2环境下磷铝酸盐-硅酸盐复合水泥石耐腐蚀机理研究[J]. 中国科技论文,2016,11(16):1897-1901.
    [3] Warda Ashraf. Carbonation of cement-based materials: Challenges and opportunities[J]. Construction and Building Materials, 2016, 120: 558-570.
    [4] Langston, M.V., Hoadley, S.F. and Young, D.N. Definitive CO2 flooding response in the SACROC unit[C]. 1988, SPE 17321.
    [5] Ashok Sabtra, Ronald Sweatman. Understanding the long-term chemical and mechanical integrity of cement in a CCS environment[J]. Energy Procedia, 2011, (4): 5243-5250.
    [6] Bai Mingxing, Zhang Zhi, Fu Xiaofei.A review on well integrity issues for CO2 geological storage and enhanced gas recovery[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 920-926.
    [7] Runar N, Saeed S and Robert G L. Effect of dynamic loading on wellbore leakage for the wabamunarea CO2 sequestration project[C]. Canadian Unconventional Resources Conference, Calgary, Canada, 2011:1-6.
    [8] 姚晓. CO2对油井水泥石的腐蚀:热力学条件、腐蚀机理及防护措施[J]. 西南石油学院学报,1998,20(3):68-72.
    [9] 张景富,徐明,朱健军,等. 二氧化碳对油井水泥石的腐蚀[J]. 硅酸盐学报,2007,35(12):1651-1656.
    [10] Abdoulghafour H, Luquot L and Gouze P. Characterization of the mechanisms controlling the permeability changes of fractured cements flowed through by CO2rich brine[J]. Environmental Science and Technology, 2013, 47:10332-10338.
    [11] 郑友志,佘朝毅,姚坤全,等. 川渝地区含硫气井固井水泥环界面腐蚀机理分析[J]. 天然气工业,2011,31(12):85-89.
    [12] Glen B. Improving wellbore seal integrity in CO2 injection wells[C]. SPE/IADC Drilling Conference and Exhibition, Amsterdam, Netherlands, 2009: 1-7.
    [13] Ashok Santra, B. R. Reddy, Feng Liang, et al. Reaction of CO2 with Portland cement at downhole conditions and the role of pozzolanic supplements[C].2009, SPE 121103.
    [14] L. Urbonas, V. Lena, D. Heinz. Effect of carbonation in supercritical CO2 on the properties of hardened cement paste of different alkalinity[J]. Construction and Building Materials, 2016, 123: 704-711.
    [15] Michael C. Cheshire, Andrew G. Stack, J. William Carey, et al. Wellbore cement porosity evolution in response to mineral alteration during CO2 flooding[J]. Environmental Science and Technology, 2017, 51:692-698.
    [16] Quo Tri Phung, Norbert Maes, Diederik Jacques, et al. Effect of limestone fillers on microstructure and permeability due to carbonation of cement pastes under controlled CO2 pressure conditions[J]. Construction and Building Materials, 2015, 82: 376-390.
    [17] 李冠颖,郭俊志,谢其泰,等. 二氧化碳储存环境对油井水泥性质影响之研究[J]. 岩土力学,2011,32(增2):346-350.
    [18] 周仕明,王立志,杨广国,等. 高温环境下CO2腐蚀水泥石规律的实验研究[J]. 石油钻探技术,2008,36(6):9-13.
    [19] 郭建华. 高温高压高含硫气井井筒完整性评价技术研究与应用[D].西南石油大学:成都,2013.
    [20] Wigand, M., Kaszuba, J.P., Carey, J.W., et al. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface[J]. Chem.Geol, 2009, 265: 122-133.
    [21] Nicolas Jacquemet, Jacques Pironon, Vincent Lagneau, et al. Armouring of well cement in H2S-CO2 saturated brine by calcite coating-Experiments and numerical modeling[J]. Applied Geochemistry, 2012, 27:782-795.
    [22] A. Brandl, J. Cutler, A. Seholm, et al. Cementing solutions for corrosive well environments[C]. SPE 132228, 2010.
    [23] 何娟,杨长辉. 硅酸盐水泥混凝土的碳化分析[J]. 硅酸盐通报,2009,28(6):1225-1229.
    [24] 柳俊哲. 混凝土碳化研究与进展(1)碳化机理与碳化评价[J]. 混凝土,2005,(11):10-13.
    [25] 鲍丙峰. 水泥基材料微结构特征与碳化模型关系的研究[M]. 东南大学,2015.
    [26] Jean-Patrick Leopold Brunet, Li Li, Zuleima T. Karpyn, et al. Fracture opening or self -sealing:Critical residence time as a unifying parameter for cement-CO2-brine interactions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 25-37.
    [27] J. William Carey, Marcus Wigand, Steve J. Chipera, et al. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA [J]. International Journal of Greenhouse Gas Control, 2007, (1): 75-85.
    [28] George W. Scherer, Barbara Kutchko, Niels Thaulow, et al. Characterization of cement from a well at Teapot Dome Oil Field: Implication for geological sequestration [J]. International Journal of Greenhouse Gas Control, 2011, (5): 115-124.
    [29] Z. Krilov, B. Loncaric, Z. Miksa. Investigation of long-term cement deterioration under a high-temperature, sour gas downhole environment[C]. SPE 58771, 2000.
    [30] 张玲峰,韩建德,刘伟庆,等. 碳化导致水泥基材料微观结构演变的研究进展[J]. 材料导报,2015,29(2):85-94.
    [31] Bruckdorfor, R A. Carbon dioxide corrosion in oilwell cements. SPE 15176, 1986.
    [32] Stuart D. C. Walsh, Wyatt L. Du Frane, Harris E. Mason, et al. Permeability of Wellbore-Cement Fractures Following Degradation by Carbonated Brine[J]. Rock Mechanism and Rock Engineering, 2013, 46: 455-464.
    [33] Wan K, Xu Q, Wang Y, et al. 3D spatial distribution of the calcium carbonate caused by carbonation of cement paste[J]. Cement and concrete composites, 2014,45:255-263.
    [34] Meier S, Peter M, Muntean A, Bohm M. Dynamics of the internal reaction layer arising during carbonation of concrete[J]. Chemical engineering science, 2007, 62(4): 1125-1137.
    [35] Thiery M, Villain G, Dangla P, et al. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics [J]. Cement and concrete research, 2007,37(7):1047-1058.
    [36] Villain G, Thiery M, Platret G. Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry[J]. Cement and concrete research, 2007,37(8):1182-1192.
    [37] Kutchko,B.G., Strazisar,B.R., D.A.,Lowry, et al. Degradation of well cement by CO2 under geologic sequestration conditions[J]. Environmental Science and Technology, 2007, 41: 4787-4792.
    [38] James C Wilson, Steven J Benbow, Richard Metcalfe, et al. Fully coupled modeling of long term cement well seal stability in the presence of CO2[J]. Energy Procedia, 2011, 4: 5162-5169.
    [39] Laure Deremble, Matteo Loizzo, Bruno Huet, et al. Stability of a leakage pathway in a cemented annulus[J]. Energy Procedia, 2011,(4):5283~5290.
    [40] Mason H. E, Du Frane, W. L Walsh, et al. Chemical and mechanical properties of wellbore cement altered by CO2-rich brine using a multianalytical approach[J]. Environmental Science and Technology, 2013, 47 (3): 1745-1752.
    [41] Liwei Zhang, David A. Dzombak, David V. Nakles, et al. Rate of H2S and CO2 attack on pozzolan-amended class H well cement under geologic sequestration conditions [J]. International Journal of Greenhouse Gas Control, 2012, 27: 299-308.
    [42] Li Q Y, Yun M L, Katharine M F, et al. Chemical reactions of portland cement with aqueous CO2 andtheir impacts on cement’s mechanical properties under geologic CO2 sequestration conditions[J]. Environmental Science and Technology, 2015, 49: 6335-6343.
    [43] Fabbri, A., Corvisier, J., Schubnel, A., et al. Effect of carbonation on the hydro-mechanical properties of Portland cements[J]. Cement and Concrete Research, 2009, 39(12): 1156-1163.
    [44] Yalcinkaya T, Radonjic M, Hughes RG, et al. The effect of CO2 saturated brine on the conductivity of wellbore-cement fractures[C].SPE 139713, 2010.
    [45] Mustafa H O, Mileva R. An experimental study of the effect of CO2 rich brine on artificially fractured well-cement[J]. Cement Concrete Composites, 2014, 45: 201~208.
    [46] Suzanne Hangx, Arjan van der Linden, Fons Marcelis, et al. Defining the brittle failure envelopes of individual reaction zones observed in CO2-exposed wellbore cement [J]. Environment Science and Technology, 2016,(50):1031~1038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700