原位生成(Fe,Cr)_7C_3致密陶瓷组织及磨损机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research On Microstructure and Wear Mechanism of(Fe,Cr)_7C_3 Compact Ceramics Formed By In-situ Sythesis
  • 作者:叶芳霞 ; 王崇 ; 许云华 ; 何斌锋 ; 付福兴 ; 夏云峰
  • 英文作者:YE Fangxia;WANG Chong;XU Yunhua;HE Binfeng;FU Fuxing;XIA Yunfeng;The Key Laboratory for Surface Engineering and Remanufacturing of Shaanxi Province;College of Mechanical and Material Engineering, Xi'an University;School of Materials Science and Engineering,Xi'an University of Technology;Xi'an Aerospace Power Technology Research Institute;
  • 关键词:原位反应 ; 表面梯度复合材料 ; (Fe ; Cr)_7C_3致密陶瓷
  • 英文关键词:in situ reaction;;surface gradient composites;;(Fe,Cr)_7C_3 dense ceramic
  • 中文刊名:ZZJS
  • 英文刊名:Foundry Technology
  • 机构:陕西省表面工程与再制造重点实验室;西安文理学院机械与材料工程学院;西安理工大学材料科学与工程学院;西安航天动力技术研究所;
  • 出版日期:2019-01-18
  • 出版单位:铸造技术
  • 年:2019
  • 期:v.40;No.322
  • 基金:陕西省教育厅专项科研计划项目(16JK2201,16JK2198,17JK1122);; 西安市科技计划“文理专项”项目(2016CX WL26;CXY1531WL24)
  • 语种:中文;
  • 页:ZZJS201901006
  • 页数:5
  • CN:01
  • ISSN:61-1134/TG
  • 分类号:25-29
摘要
通过采用铸渗和热处理原位反应工艺相结合的方法,使铬板中的铬原子与灰口铸铁中的碳原子发生原位反应,制备出(Fe,Cr)_7C_3/Fe表面梯度复合材料。采用XRD、SEM、TEM等检测手段对复合材料的物相组成与显微组织进行分析,利用WS-2005涂层附着力自动划痕仪进行刻划实验,对(Fe,Cr)_7C_3/Fe致密陶瓷的磨损机理进行研究。研究表明:所制备的(Fe,Cr)_7C_3/Fe表面梯度复合材料主要物相组成为α-Fe,Cr和(Fe,Cr)_7C_3/Fe。其中靠近铬板的(Fe,Cr)_7C_3/Fe致密陶瓷层的厚度随保温时间的增加先增大后减小,最终随铬板的消失而消失。(Fe,Cr)_7C_3/Fe致密陶瓷的粒径在400~500 nm,颗粒结合紧密,晶粒呈多边形,晶界清晰规整。(Fe,Cr)_7C_3/Fe表面梯度复合材料体系的主要失效形式为陶瓷层的断裂与剥落。
        The (Fe,Cr)_7C_3/Fe surface gradient composites were prepared by in-situ reaction of chromium atoms in chromium plate with carbon atoms in gray cast iron combining by casting infiltration and heat treatment. The phase composition and microstructure of the composites were analyzed by XRD, SEM and TEM. The wear mechanism of (Fe,Cr)_7C_3 dense ceramics was investigated by WS-2005 automatic scratch tester. The results show that the main phase composition of the (Fe,Cr)_7C_3/Fe surface gradient composites are α-Fe, Cr and (Fe,Cr)_7C_3. The thickness of (Fe,Cr)_7C_3 dense ceramic layer near the chromium plate first increase and then decrease with the increased of holding time, and finally disappeared with the disappearance of chromium plate. The particle size of (Fe,Cr)_7C_3 dense ceramics is 400~500 nm, and the grain boundaries are clear and regular. The main failure modes of (Fe,Cr)_7C_3/Fe surface gradient composites are the fracture and spalling of the ceramic layer.
引文
[1] Song Y, Wang H. High Speed Sliding Wear Behavior of Recycled WCp-Reinforced Ferrous Matrix Composites Fabricated by Centrifugal Cast[J]. Wear, 2012, 276-277:105-110.
    [2] Wang Y M, Zhang C H, Zong Y P, et al. Experimental and Simulation Studies of Particle Size Effects on Tensile Deformation Behavior of Iron Matrix Composites[J]. Adv. Comp. Mater., 2013,22:299-310.
    [3] Song B, Dong S, Coddet P, et al. Microstructure and Tensile Behavior of Hybrid Nano-Micro SiC Reinforced Iron Matrix Composites Produced by Selective Laser Melting[J]. J. Alloys Compd.,2013, 579:415-421.
    [4] Cheng F, Wang Y, Yang T. Microstructure and Wear Properties of Fe-VC-Cr7C3Composite Coating on Surface of Cast Steel[J].Mater. Charac., 2008, 59:488-492.
    [5]王久彬.高铬铸铁轧辊的材质组织及力学性能[D].哈尔滨:哈尔滨工业大学, 1992:45.
    [6]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社, 2006.
    [7] Q T Li, Y P Lei, H G Fu. Laser cladding in-situ Nb C particle reinforced Fe-based composite coatings with rare earth oxide addition[J]. Surf. Coat. Technol., 2014, 239:102-107.
    [8] Kim J G, Kim W S, Kim Y H, et al. Formation of graphene on SiC by chemical vapor deposition with liquid sources[J]. Surf. Coat.Technol., 2013, 231:189-192.
    [9] Shokouhfar M, Allahkaram S R. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles[J]. Surf. Coat. Technol., 2016, 291:396-405.
    [10] Zhang X, Cooke K, Carmichael P, et al. The deposition of crystallized TiO2coatings by closed field unbalanced magnetron sputter ion plating[J]. Surf. Coat. Technol., 2013, 236:290-295.
    [11] Girolamo G D, Blasi C, Brentari A, et al. Microstructural, mechanical and thermal characteristics of zirconia-based thermal barrier coatings deposited by plasma spraying[J]. Ceram. Int., 2015, 41(9):11776-11785.
    [12] Ghabchi A, Sampath S, Holmberg K, et al. Damage mechanisms and cracking behavior of thermal sprayed WC-Co Cr coating under scratch testing[J]. Wear, 2014, 313(1-2):97-105.
    [13] Bolelli G, Hulka I, Koivuluoto H, et al. Properties of WC-Fe Cr A1coatings manufactured by different high velocity thermal spray processes[J]. Surf. Coat. Technol., 2014, 247:74-89.
    [14] J Li, X Luo, G J Li. Effect of Y2O3on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J]. Wear, 2014, 310(1-2):72-82.
    [15] Lenivtseva O G, Bataev I A, Golkovskii M G, et al. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon[J]. Appl. Surf. Sci., 2015,355:320-326.
    [16] Hui Zhang, Yong Zou, Zengda Zou, et al. Comparative study on continuous and pulsed wave fiber laser cladding in-situ titanium-vanadium carbidesreinforced Fe-based composite layer[J].Mater. Lett., 2015,139:255-257.
    [17]龚江宏.脆性固体断裂力学[M].北京:高等教育出版社, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700