喷嘴压力对非淹没空化流场影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Nozzle Pressure on Flow Field of Non-Submerged Cavitation Jetting
  • 作者:陈振国 ; 王海峰 ; 刘伯轩
  • 英文作者:CHEN Zhenguo;WANG Haifeng;LIU Boxuan;School of Mechanical and Power Engineer,Nanjing Tech University;
  • 关键词:空化喷嘴 ; 非淹没 ; 空化水射流 ; 三相流 ; FLUENT软件
  • 英文关键词:cavitation nozzle;;non submerged;;cavitation water jet;;three phase flow;;FLUENT
  • 中文刊名:QGJX
  • 英文刊名:Light Industry Machinery
  • 机构:南京工业大学机械与动力工程学院;
  • 出版日期:2019-08-06
  • 出版单位:轻工机械
  • 年:2019
  • 期:v.37;No.160
  • 语种:中文;
  • 页:QGJX201904005
  • 页数:5
  • CN:04
  • ISSN:33-1180/TH
  • 分类号:30-34
摘要
为了了解非淹没射流对大型工件的处理效果,课题组提出并设计了一种新型的非淹没人工射流,该方式可以适应各种场合工件的处理。在理论基础上,由淹没状态下的汽、液两相流变为非淹没状态下的气、汽、液三相流,采用外围低压水与内喷嘴高压水的结合,形成了人工淹没环境结构;通过该结构,使用FLUENT软件,实现了非淹没喷嘴空化效果的判断与预测;并通过模拟结果,分析了不同压力对空化流场的影响。结果表明:随着压力的升高,流场的轴向速度、轴向动压强以及汽相体积分数有着明显的提高。该非淹没喷嘴可产生较强的空化效果,且对入口压力较为敏感。
        To understand the effect of non-submerged jet on large workpieces,a new type of non-submerged artificial jet was proposed and designed,which could be well adapted to the processing of workpieces in various occasions. On the basis of theory,the three-phase flow of gas,vapor and liquid in non-submerged state was changed from the two-phase flow of vapor and liquid in submerged state. The structure of artificial submerged environment was formed by the combination of peripheral low pressure water and internal nozzle high pressure water. Through this structure and using Fluent software,the judgment and prediction of cavitation effect of non-submerged nozzle were realized. The influence of different pressure on cavitation flow field was analyzed by simulation results. The results show that with the increase of pressure,the axial velocity,axial dynamic pressure and vapor volume fraction of the flow field increase significantly.Therefore,the non-submerged nozzle can produce strong cavitation effect and is sensitive to the inlet pressure.
引文
[1]沈忠厚.水射流理论与技术[J].中国安全科学学报,1999,9(增刊1):89.
    [2]王瑞和,倪红坚.高压水射流破岩机理研究[J].中国石油大学学报(自然科学版),2002,26(4):118-122.
    [3]胡静艳,谭锦凌,李振华.水射流贻贝单边脱壳装备喷嘴内流场数值仿真研究[J].机电工程,2018,35(8):828-832.
    [4]王建杰,陈立宇,杨夏明,等.空化水射流的研究进展[J].精密成形工程,2016,8(5):158-160.
    [5]李根生,沈忠厚.空化射流及其在钻井工程中的应用研究[J].石油钻探技术,1996,24(4):51-54.
    [6]吉春和,张新明.高压水射流喷丸强化技术[J].轻工机械,2007,25(4):109-111.
    [7]SOYAMA H.Introduction of compressive residual stress using a cavitating jet in air[J].Journal of Engineering Materials and Technology,2004,126(1):123-128.
    [8]SOYAMA H.Improvement of fatigue strength by using cavitating jets in air and water[J].Journal of Materials Science,2007,42(16):6638-6641.
    [9]SOYAMA H,KIKUCHI T,NISHIKAWA M,et al.Introduction of compressive residual stress into stainless steel by employing a cavitating jet in air[J].Surface and Coatings Technology,2011,205(10):3167-3174.
    [10]MARCON A,MELKOTE S N,CASTLE J,et al.Effect of jet velocity in co-flow water cavitation jet peening[J].Wear,2016,360/361:38-50.
    [11]刘伯轩.非淹没空化水射流多相流动特性数值模拟研究[D].南京:南京工业大学,2018:44-49.
    [12]郝毓雅,张志强.不同湍流模型下空中加油吊舱尾流场对比分析[J].现代机械,2018(3):73.
    [13]罗亮,尤宝.基于Zwart模型的化工离心泵空化性能数值模拟[J].石油化工设备,2017,46(1):25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700