合并焊道法对SUS304不锈钢平板对接接头焊接残余应力计算精度和效率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Lumped-pass Method on Calculation Accuracy and Efficiency of Welding Residual Stress in SUS304 Stainless Steel Butt Joints
  • 作者:胡兴 ; 戴培元 ; 张超华 ; 李索 ; 邓德安
  • 英文作者:HU Xing;DAI Peiyuan;ZHANG Chaohua;LI Suo;DENG Dean;College of Materials Science and Engineering, Chongqing University;
  • 关键词:合并焊道 ; 瞬间热源 ; 焊接残余应力 ; 计算时间 ; 计算精度
  • 英文关键词:lumped-pass;;instantaneous heat source;;residual stress;;calculation time;;calculation accuracy
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:重庆大学材料科学与工程学院;
  • 出版日期:2019-07-18 13:23
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(51875063);; 重庆市研究生科研创新(CYB18003)资助项目
  • 语种:中文;
  • 页:JXXB201912010
  • 页数:11
  • CN:12
  • ISSN:11-2187/TH
  • 分类号:86-96
摘要
厚大不锈钢焊接接头广泛应用于核电、火电和化工等行业中,焊接残余应力一直是一个被关注的焦点问题。随着计算焊接力学理论的日臻成熟,采用有限元方法来模拟焊接残余应力已经成为了可能。但是由于计算机硬件条件的限制,目前的计算效率还难以满足实际工程的需求。基于ABAQUS有限元软件平台开发高效的瞬间热源模型来模拟板厚为25 mm的对接接头的热输入,并与移动热源模型的计算结果进行比较。为了进一步提高计算效率,基于奥氏体不锈钢母材和相应填充材料的性能特点,尝试采用不同的焊道合并方式来缩短焊接温度场和应力场的计算时间。同时,还采用应力释放法测量板厚25mm、焊道数为17道的平板对接接头的残余应力分布,并将数值模拟结果与实验结果进行比较。结果表明,采用瞬间热源模型可较精确地模拟焊接残余应力的分布和大小,计算时间与移动热源模型相比可以大幅缩短。此外,采用数值模拟方法研究合并焊道法对板厚为75mm的对接接头残余应力计算结果的影响。数值模拟结果表明,焊道合并方式对纵向残余应力的计算结果影响较小。对横向残余应力而言,焊道合并方式对计算精度有较显著的影响,表层焊道合并方式严重低估了表面横向残余应力,而内部焊道整体合并方式虽然略微低估了表面横向残余应力,但能较好地预测接头上、下表面的横向残余应力分布与大小。采用瞬间热源模型再结合焊道合并方式是一种解决厚大焊接接头残余应力计算的有效手段。
        Thick-plate stainless steel welded joints are widely used in nuclear power plants and chemical factories, and the welding residual stresses of these joints have always been a focus of attention. The finite element method has been recognized as an effective way to calculate welding residual stress. Because the welding process is a highly nonlinear problem, the computational efficiency cannot meet the requirements under the existing computing hardware conditions. Based on the ABAQUS commercial software, an efficient instantaneous heat source model is developed to simulate welding residual stress of a multi-pass butt-welded joint with 25 mm thickness. Meanwhile, the simulated results of welding residual stress distribution is compared with that obtained by the traditional moving heat source model. In order to further improve the calculation efficiency, different lumped-pass patterns are designed to shorten the computing time. Experiments are also carried out to measure the residual stress distribution of the butt-welded joint. The comparison between the numerical results and the measured data shows that both the moving heat source model and the instantaneous heat source model can accurately predict welding residual stress, and the computing time of the latter is much shorter than that of the former. In addition, the influence of lumped-pass method on the residual stress of a multi-pass butt-welded joints with 75 mm thickness is investigated numerically. The numerical simulation results show that different lumped-pass patterns have a little effect on the longitudinal residual stress, but have a significant influence on the transverse residual stress. The calculation efficiency can be greatly improved by adopting instantaneous heat source and lumped-pass method, and this combined method will be an effective approach to solve the problem of residual stress calculation for thick-plate welded joints.
引文
[1]HINOJOS A,MIRELES J,REICHARDT A,et al.Joining of Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology[J].Materials&Design,2016,94:17-27.
    [2]YE Y,CAI J,JIANG X,et al.Influence of groove type on welding-induced residual stress,deformation and width of sensitization region in a SUS304 steel butt welded joint[J].Advances in Engineering Software,2015,86:39-48.
    [3]ELMESALAMY A,FRANCIS J A,LI L.A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J].International Journal of Pressure Vessels and Piping,2014,113:49-59.
    [4]MIRSHEKARI G R,TAVAKOLI E,ATAPOUR M,et al.Microstructure and corrosion behavior of multi-pass gas tungsten arc welded 304L stainless steel[J].Materials&Design,2014,55:905-911.
    [5]HAMADA I,YAMAUCHI K.Intergranular stress corrosion cracking behavior of niobium-added Type 308stainless steel weld overlay metal in a simulated BWRenvironment[J].Nuclear Engineering and Design,2002,214(3):205-220.
    [6]FUJII T,TOHGO K,KENMOCHI A,et al.Experimental and numerical investigation of stress corrosion cracking of sensitized type 304 stainless steel under high-temperature and high-purity water[J].Corrosion Science,2015,97:139-149.
    [7]TERACHI T,YAMADA T,MIYAMOTO T,et al.SCCgrowth behaviors of austenitic stainless steels in simulated PWR primary water[J].Journal of Nuclear Materials,2012,426(1-3):59-70.
    [8]QIAO D,ZHANG W,FENG Z.High-temperature constitutive behavior of austenitic stainless steel for weld residual stress modeling[C]//ASME 2012 Pressure Vessels and Piping Conference.American Society of Mechanical Engineers,2012:1229-1236.
    [9]HATAMLEH O,DEWALD A.An investigation of the peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints[J].Journal of Materials Processing Technology,2009,209(10):4822-4829.
    [10]SANO Y,OBATA M,YAMAMOTO T.Residual stress Improvement of weldment by laser peening[J].Welding international,2006,20(8):598-601.
    [11]UEDA Y,YAMAKAWA T.Analysis of thermal elastic-plastic stress and strain during welding by finite element method[J].Japan Welding Society Transactions,1971,2(2):186-196.
    [12]蔡志鹏,赵海燕,吴甦,等.串热源模型及其在焊接数值模拟中的应用[J].机械工程学报,2001,37(4):25-28.CAI Zhipeng,ZHAO Hanyan,WU Su,et al.Model of string heat source in welding numerical simulation[J].Journal of Mechanical Engineering,37(4):25-28.
    [13]PU X,ZHANG C,LI Su,et al.Simulating welding residual stress and deformation in a multi-pass butt-welded joint considering balance between computing time and prediction accuracy[J].The International Journal of Advanced Manufacturing Technology,2017,93(5-8):2215-2226.
    [14]BARSOUM Z,LUNDB?CK A.Simplified FE welding simulation of fillet welds-3D effects on the formation residual stresses[J].Engineering Failure Analysis,2009,16(7):2281-2289.
    [15]HONG J K,TSAI C L,DONG P.Assessment of numerical procedures for residual stress analysis of multipass welds[J].Welding Journal-New York,1998,77:372.
    [16]ROSSILLON F,DEPRADEUX L.A methodology for a simplified thermo-mechanical welding simulation in an engineering framework[J].Div-III ID,2011,407:1-8.
    [17]邓德安,KIYOSHIMA S.退火温度对SUS304不锈钢焊接残余应力计算精度的影响[J].金属学报,2014,50(5):626-632.DENG Dean,KIYOSHIMA S.Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint[J].Acta Metall Sin,2014,50(5):626-632.
    [18]OGAWA K,DENG D,KIYOSHIMA S,et al.Investigations on welding residual stresses in penetration nozzles by means of 3D thermal elastic plastic FEM and experiment[J].Computational Materials Science,2009,45(4):1031-1042.
    [19]TERASAKI T,KITAMURA T,AKIYAMA T,et al.Applicable conditions of instantaneous source used for welding heat conduction[J].Science and Technology of Welding and Joining,2005,10(6):701-705.
    [20]KIYOSHIMA S,DENG D,OGAWA K,et al.Influences of heat source model on welding residual stress and distortion in a multi-pass J-groove joint[J].Computational Materials Science,2009,46(4):987-995.
    [21]TANAKA M,SHIMIZU T,TERASAKI T,et al.Effects of activating flux on arc phenomena in gas tungsten arc welding[J].Science and Technology of Welding and Joining,2000,5(6):397-402.
    [22]DENG D,MURAKAWA H.Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J].Computational Materials Science,2006,37(3):269-277.
    [23]DENG D,ZHANG C,PU X,et al.Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint[J].Journal of Materials Engineering and Performance,2017,26(4):1494-1505.
    [24]PARK J,AN G,WOO W.The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding[J].International Journal of Naval Architecture and Ocean Engineering,2018,10(2):129-140.
    [25]DENG D,KIYOSHIMA S.Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences[J].Nuclear Engineering and Design,2010,240(4):688-696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700