应变速率对充氢SA508-III钢氢脆敏感性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of strain rate on hydrogen embrittlement sensitivity of H_2 charged SA508-III steel
  • 作者:刘家骅 ; 王磊 ; 王旭升 ; 杨玉芳 ; 崔君军
  • 英文作者:Liu Jiahua;Wang Lei;Wang Xusheng;Yang Yufang;Cui Junjun;Liaoning Key Laboratory of Information Physics Fusion and Intelligent Manufacturing for CNC Machine,Shenyang Institute of Technology;Key Laboratory for Anisotropy and Texture of Materials,Northeastern University;
  • 关键词:SA508-III ; 应变速率 ; ; 氢脆敏感性
  • 英文关键词:SA508-III steel;;strain rate;;hydrogen;;hydrogen embrittlement sensitivity
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:沈阳工学院数控机床信息物理融合与智能制造辽宁省重点实验室;东北大学材料各向异性与织构教育部重点实验室;
  • 出版日期:2018-10-25
  • 出版单位:金属热处理
  • 年:2018
  • 期:v.43;No.494
  • 基金:辽宁省自然科学基金指导计划(20170540667);; 辽宁省博士科研启动基金指导计划(20170520004);; 辽宁省创新创业项目(201813201089)
  • 语种:中文;
  • 页:JSRC201810062
  • 页数:5
  • CN:10
  • ISSN:11-1860/TG
  • 分类号:234-238
摘要
采用高温高压气相热充氢方法将氢充入SA508-III钢,通过比较不同应变速率充氢钢的拉伸变形行为,考察氢对SA508-III钢氢脆敏感性的影响。结果表明,随应变速率降低,钢的屈服强度增加幅度减小,而钢的氢脆敏感性增强。钢的氢脆主要取决于氢与位错的相互作用,当应变速率高于5.21×10~(-3)s~(-1)时,柯氏氢气团的迁移速率跟不上位错的滑移速率,氢对位错源开动的阻碍作用增强,因而屈服强度增加幅度加大。当应变速率低于5.21×10~(-3)s~(-1)时,柯氏氢气团随可动位错一同运动,此时氢对位错源开动阻碍作用减弱,因而屈服强度增加幅度减小,但位错可将氢传递到碳化物与基体界面处,造成局部氢浓度升高,形成氢致裂纹,裂纹扩展进入铁素体基体内形成准解理断裂,故SA508-III钢的氢脆敏感性增加。保持SA508-III钢低氢脆敏感性的最大应变速率为5.21×10~(-3)s~(-1)。
        SA508-III steel was charged with hydrogen using a high-pressure thermal charging method.The effect of hydrogen element on the tensile properties with different strain rates was studied and the hydrogen embrittlement sensitivity of the steel was evaluated.The results indicate that with decreasing strain rate,the increment of the yielding strength decreases,and the hydrogen embrittlement sensitivity of the steel increases.hydrogen embrittlement of the SA508-III steel is decided by the interaction of hydrogen and dislocations.When the strain rate is larger than 5.21×10~(-3)s~(-1),the Cottrell-H-atmosphere can not migrate with dislocations,and the hindering action of hydrogen on the initiation of dislocation is increased,so the increment of the yielding strength is increased.When the strain rate is less than 5.21×10~(-3)s~(-1),the Cottrell-H-atmosphere can migrate with dislocations,and the hindering action of hydrogen on the initiation of dislocation is decreased.So the increase degree of the yielding strength is decreased.However,hydrogen can be transported by dislocations to the interface between the carbides and the matrix and causes local high hydrogen concentration,which can form hydrogen induced cracks.The cracks propagate into the ferrite matrix to form the quasi-cleavage fracture and result in the increase of hydrogen embrittlement sensitivity.In order to keep low hydrogen embrittlement sensitivity of SA508-III steel,the maximum strain rate of SA508-III steel is 5.21×10~(-3)s~(-1).
引文
[1]马中良.三代核电蒸汽发生器用SA-508 Gr. 3 Cl. 2锻件的热处理工艺[J].金属热处理,2018,43(5):180-183.Ma Zhongliang. Heat treatment process of SA508 Gr. 3 C1. 2 forgings for steam generator of the third generation nuclear power plant[J]. Heat Treatment of Metals,2018,43(5):180-183.
    [2]Ren X C,Chu W Y,Su Y J,et al. Effects of atomic hydrogen and flaking on mechanical properties of wheel steel[J]. Metallurgical and Materials Transactions A,2007,38(5):1004-1011.
    [3]Liang Y,Sofronis P,Aravas N. On the effect of hydrogen on plastic instabilities in metals[J]. Acta Materialia,2003,54(9):2717-2730.
    [4]Symons D M. The effect of hydrogen on the fracture toughness of alloy X-750 at elevated temperatures[J]. Journal of Nuclear Materials,1998,265(3):225-231.
    [5]Tien J K,Thompson A W,Bernstein I M,et al. Hydrogen transport by dislocations[J]. Metallurgical Transactions A,1976,7(6):821-829.
    [6]Delafosse D,Magnin T. Hydrogen induced plasticity in stress corrosion cracking of engineering systems[J]. Engineering Fracture Mechanics,2001,68(6):693-729.
    [7] Fassina P,Bolzoni F,Fumagalli G. Influence of hydrogen and low temperature on pipeline steels mechanical behavior[J]. Procedia Engineering,2011,10(24):3226-3234.
    [8]潘健生,王婧,顾剑锋.我国高性能化智能制造发展战略研究[J].金属热处理,2015,40(1):1-6.Pan Jiansheng,Wang Jing,Gu Jianfeng. Study on the development srt ategy of high performance intelligent manufacturing in China[J]. Heat Treatment of Metals,2015,40(1):1-6.
    [9]Zhu W Y. Hydrogen Damage and Delayed Fracture[M]. Beijing:Metallurgical Industry Press,1988,190-195.
    [10]Fujita F E. Hydrogen in Metals[M]. Berlin:Springer-Verlag,1978,50-52.
    [11]Brass A M,CHENE J. Influence of deformation on the hydrogen behavior in iron and nickel base alloys:A review of experimental data[J]. Materials Science and Engineering A,1998,242(2):210-221.
    [12]Robert W C,Peter H. Physical Metallurgy[M]. The Netherlands:Elsevier Science B V Press,1996:557-559.
    [13]Koyama M,Akiyama E,Sawaguchi T,et al. Hydrogen-assisted quasicleavage fracture in a single crystalline type 316 austenitic stainless steel[J]. Corrosion Science,2013,75(7):345-353.
    [14]Ji H,Park I J,Lee S M,et al. The effect of pre-strain on hydrogen embrittlement in 310S stainless steel[J]. Journal of Alloys and Compounds,2014,598(3):205-212.
    [15]Chun Y S,Lee J,Bae C M,et al. Caliber-rolled TWIP steel for highstrength wire rods with enhanced hydrogen-delayed fracture resistance[J]. Scripta Materialia,2012,67(7):681-684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700