Effect of the sintering technique on the ferroelectric and d_(33) piezoelectric coefficients of Bi_(0.5)(Na_(0.84)K_(0.16))_(0.5)TiO_3 ceramic
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of the sintering technique on the ferroelectric and d_(33) piezoelectric coefficients of Bi_(0.5)(Na_(0.84)K_(0.16))_(0.5)TiO_3 ceramic
  • 作者:G.HERNANDEZ-CUEVAS ; J.R.LEYVA ; MENDOZA ; P.E.GARCíA-CASILLAS ; C.A.RODRíGUEZ ; GONZáLEZ ; J.F.HERNANDEZ-PAZ ; G.HERRERA-PéREZ ; L.FUENTES-COBAS ; S.DíAZ ; DE ; LA ; TORRE ; O.RAYMOND-HERRERA ; H.CAMACHO-MONTES
  • 英文作者:G.HERNANDEZ-CUEVAS;J.R.LEYVA MENDOZA;P.E.GARCíA-CASILLAS;C.A.RODRíGUEZ GONZáLEZ;J.F.HERNANDEZ-PAZ;G.HERRERA-PéREZ;L.FUENTES-COBAS;S.DíAZ DE LA TORRE;O.RAYMOND-HERRERA;H.CAMACHO-MONTES;Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez;Centro de Investigación en Materiales Avanzados;Centro de Investigación e Innovación Tecnológica, Instituto Politécnico Nacional;Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México;
  • 英文关键词:lead-free piezoelectrics;;sol–gel;;pressureless sintering (PLS);;sinter-forging (SF);;spark plasma sintering(SPS);;piezoresponse
  • 中文刊名:JOAC
  • 英文刊名:先进陶瓷(英文)
  • 机构:Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez;Centro de Investigación en Materiales Avanzados;Centro de Investigación e Innovación Tecnológica, Instituto Politécnico Nacional;Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Advanced Ceramics
  • 年:2019
  • 期:v.8
  • 基金:CONACYT grant A1-S-9232;; CONACYT for the Ph.D. scholarship
  • 语种:英文;
  • 页:JOAC201902012
  • 页数:11
  • CN:02
  • ISSN:10-1154/TQ
  • 分类号:128-138
摘要
In the search of lead-free piezoelectric materials,ceramic processing techniques offer potential tools to increase the piezoelectric and ferroelectric properties in addition to new chemical compositions.Powders of pure BNKT16(Bi_(0.5)(Na_(0.84)K_(0.16))_(0.5)TiO_3)phase were synthesized by sol–gel method with a low crystallization temperature(750℃).Ceramic samples were sintered by pressureless sintering(PLS),sinter-forging(SF),and spark plasma sintering(SPS)techniques.Structural,morphological,and chemical characterizations were performed by XRD,Raman,EDS,and SEM.Sintered samples by PLS and SF exhibit rod-like grains associated to bismuth volatility.The highest remanent polarization(11.05μC/cm~2),coercive field(26.2 kV/mm),and piezoelectric coefficient(165 pC/N)were obtained for SF sample.The piezoresponse force microscopy(PFM)analysis shows that the crystallites at the nanoscale exhibit piezoelectric phenomenon and the highest piezoelectric response is reported for PLS sample.The presence of the rhombohedral phase,the increase in grain and crystallite size,and the oriented rod-like inclusions favoring the crystallographic texture are facts that enhance the piezoelectric coefficient for BNKT16 piezoceramics.
        In the search of lead-free piezoelectric materials,ceramic processing techniques offer potential tools to increase the piezoelectric and ferroelectric properties in addition to new chemical compositions.Powders of pure BNKT16(Bi_(0.5)(Na_(0.84)K_(0.16))_(0.5)TiO_3)phase were synthesized by sol–gel method with a low crystallization temperature(750℃).Ceramic samples were sintered by pressureless sintering(PLS),sinter-forging(SF),and spark plasma sintering(SPS)techniques.Structural,morphological,and chemical characterizations were performed by XRD,Raman,EDS,and SEM.Sintered samples by PLS and SF exhibit rod-like grains associated to bismuth volatility.The highest remanent polarization(11.05μC/cm~2),coercive field(26.2 kV/mm),and piezoelectric coefficient(165 pC/N)were obtained for SF sample.The piezoresponse force microscopy(PFM)analysis shows that the crystallites at the nanoscale exhibit piezoelectric phenomenon and the highest piezoelectric response is reported for PLS sample.The presence of the rhombohedral phase,the increase in grain and crystallite size,and the oriented rod-like inclusions favoring the crystallographic texture are facts that enhance the piezoelectric coefficient for BNKT16 piezoceramics.
引文
[1]Quan ND,Bac HL,Thiet DV,et al.Current development in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials.Adv Mater Sci Eng 2014,2014:365391.
    [2]R?del J,Jo W,Seifert KTP,et al.Perspective on the development of lead-free piezoceramics.J Am Ceram Soc2009,92:1153-1177.
    [3]Camargo J,Ramajo L,Rubio-Marcos F,et al.Ferroelectric properties of Bi0.5(Na0.8K0.2)0.5Ti O3 ceramics.Adv Mater Res 2014,975:3-8.
    [4]Chen P-Y,Chou C-C,Tseng T-Y,et al.Comparative study between conventional and microwave sintered lead-free BNKT ceramics.Ferroelectrics 2009,381:196-200.
    [5]Ullah A,Ahn CW,Hussain A,et al.The effects of sintering temperatures on dielectric,ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3piezoelectric ceramics synthesized by the sol-gel technique.Curr Appl Phys 2010,10:1367-1371.
    [6]Anjali K,Ajithkumar TG,Joy PA.Correlations between structure,microstructure,density and dielectric properties of the lead-free ferroelectrics Bi0.5(Na,K)0.5Ti O3.J Adv Dielect 2015,5:1550028.
    [7]Gonzalez AM,Pardo L,Montero-Cabrera ME,et al.Analysis of the rhombohedral-tetragonal symmetries coexistence in lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3ceramics from nanopowders.Adv Appl Ceram 2016,115:96-105.
    [8]Liu X,Xue SD,Li F,et al.Giant electrostrain accompanying structural evolution in lead-free NBT-based piezoceramics.J Mater Chem C 2018,6:814-822.
    [9]Liu X,Li F,Li P,et al.Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry.J Eur Ceram Soc 2017,37:4585-4595.
    [10]Sasaki A,Chiba T,Mamiya Y,et al.Dielectric and piezoelectric properties of(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3systems.Jpn J Appl Phys 1999,38:5564-5567.
    [11]Li W,Xu ZJ,Chu RQ,et al.Synthesis and characterization of(Na0.85K0.15)0.5Bi0.5TiO3 ceramics by different methods.Mater Res Bull 2011,46:871-874.
    [12]Guilmeau E,Lambert S,Chateigner D,et al.Quantitative texture analysis of polyphased oxides by diffraction:Example of Bi2223 sinter-forged ceramic and Y123 foam superconductors.Mat Sci Eng B 2003,104:107-112.
    [13]Hao JJ,Wang XH,Chen RZ,et al.Preparation of textured bismuth titanate ceramics using spark plasma sintering.JAm Ceram Soc 2004,87:1404-1406.
    [14]Herrera Robles JO,Rodríguez González CA,de la Torre SD,et al.Dielectric properties of bismuth titanate densified by spark plasma sintering and pressureless sintering.JAlloys Compd 2012,536:S511-S515.
    [15]Liu J,Shen ZJ,Nygren M,et al.SPS processing of bismuth-layer structured ferroelectric ceramics yielding highly textured microstructures.J Eur Ceram Soc 2006,26:3233-3239.
    [16]Kan YM,Wang PL,Xu T,et al.Spark plasma sintering of bismuth titanate ceramics.J Am Ceram Soc 2005,88:1631-1633.
    [17]Chen XM,Liao YW,Wang HP,et al.Phase structure and electric properties of Bi0.5(Na0.825K0.175)0.5TiO3 ceramics prepared by a sol-gel method.J Alloys Compd 2010,493:368-371.
    [18]Pérez-Mezcua D,Calzada ML,Bretos I,et al.Influence of excesses of volatile elements on structure and composition of solution derived lead-free(Bi0.50Na0.50)1-xBaxTiO3 thin films.J Eur Ceram Soc 2016,36:89-100.
    [19]Rodríguez-Carvajal J.Recent advances in magnetic structure determination by neutron powder diffraction.Phys B:Condens Matter 1993,192:55-69.
    [20]Herrera-Pérez G,Castillo-Sandoval I,Solís-Canto O,et al.Local piezo-response for lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3electro-ceramic by switching spectroscopy.Mat Res 2018,21:e20170605.
    [21]Kreisel J,Glazer AM,Bouvier P,et al.High-pressure Raman study of a relaxor ferroelectric:The Na0.5Bi0.5TiO3perovskite.Phys Rev B 2001,63:174106.
    [22]Montero-Cabrera ME,Pardo L,García A,et al.The global and local symmetries of nanostructured ferroelectric relaxor 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3.Ferroelectrics2014,469:50-60.
    [23]Jones GO,Thomas PA.Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3.Acta Crystallogr Sect B 2002,58:168-178.
    [24]Jones GO,Kreisel J,Thomas PA.A structural study of the(Na1-xKx)0.5Bi0.5TiO3 perovskite series as a function of substitution(x)and temperature.Powder Diffr 2002,17:301-319.
    [25]Aroyo MI,Kirov A,Capillas C,et al.Bilbao crystallographic server.II.Representations of crystallographic point groups and space groups.Acta Cryst Sect A 2006,62:115-128.
    [26]Kroumova E,Aroyo MI,Perez-Mato JM,et al.Bilbao crystallographic server:Useful databases and tools for phase-transition studies.Phase Transitions 2003,76:155-170.
    [27]Wang J,Zhou Z,Xue J.Phase transition,ferroelectric behaviors and domain structures of(Na1/2Bi1/2)1-xTiPbxO3thin films.Acta Mater 2006,54:1691-1698.
    [28]Prado-Espinosa A,Camargo J,del Campo A,et al.Exploring new methodologies for the identification of the morphotropic phase boundary region in the(BiNa)TiO3-Ba Ti O3 lead free piezoceramics:Confocal Raman microscopy.J Alloys Compd 2018,739:799-805.
    [29]Rout D,Moon KS,Rao VS,et al.Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy.JCeram Soc Jpn 2009,117:797-800.
    [30]Ramajo L,Camargo J,Rubio-Marcos F,et al.Influences of secondary phases on ferroelectric properties of Bi(Na,K)TiO3 ceramics.Ceram Int 2015,41:5380-5386.
    [31]Ramajo L,Castro M,Rubio-Marcos F,et al.Influence of Mo O3 on electrical and microstructural properties of(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3.J Mater Sci:Mater Electron 2013,24:3587-3593.
    [32]Gruverman A,Kholkin A.Nanoscale ferroelectrics:Processing,characterization and future trends.Rep Prog Phys 2006,69:2443-2474.
    [33]Bharathi P,Thomas P,Varma KBR.Piezoelectric properties of individual nanocrystallites of Ba0.85Ca0.15Zr0.1Ti0.9O3obtained by oxalate precursor route.J Mater Chem C 2015,3:4762-4770.
    [34]Howard CJ,Kisi EH.Preferred orientation in DebyeScherrer geometry:Interpretation of the March coefficient.J Appl Cryst 2000,33:1434-1435.
    [35]Zolotoyabko E.Fast quantitative analysis of strong uniaxial texture using a March-Dollase approach.J Appl Cryst 2013,46:1877-1879.
    [36]Camacho-Montes H,García-Casillas PE,RodríguezRamos R,et al.Simulation of the stress-assisted densification behavior of a powder compact:Effect of constitutive laws.J Am Ceram Soc 2008,91:836-845.
    [37]Ayrikyan A,Prach O,Khansur NH,et al.Investigation of residual stress in lead-free BNT-based ceramic/ceramic composites.Acta Mater 2018,148:432-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700