Enhanced capacity to CO_2 sorption in humid conditions with a K-doped biocarbon
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhanced capacity to CO_2 sorption in humid conditions with a K-doped biocarbon
  • 作者:Nausika ; Querejeta ; FernANDo ; Rubiera ; Covadonga ; Pevida
  • 英文作者:Nausika Querejeta;FernANDo Rubiera;Covadonga Pevida;Instituto Nacional del Carbón;
  • 英文关键词:Biocarbon;;K_2CO_3;;CO_2 sorption;;Humid flue gas
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Instituto Nacional del Carbón;
  • 出版日期:2019-07-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.34
  • 语种:英文;
  • 页:TRQZ201907019
  • 页数:12
  • CN:07
  • ISSN:10-1287/O6
  • 分类号:216-227
摘要
Solid sorbents with enhanced capacity and selectivity towards CO_2 are crucial in the design of an efficient capture process.Among the possible alternatives,K_2CO_3-doped activated carbons have shown high CO_2 capture capacity and rapid carbonation reaction rate.In this work,a sustainable and low-cost approach is developed with a biomass-based activated carbon or biocarbon as support.The CO_2 capture performance in cyclic sorption–desorption operation and the sorption kinetics have been investigated under different scenarios in a purpose-built fixed-bed set-up.Independent of the H_2O concentration in the flue gas,a constant relative humidity(~20%)in the K_2CO_3-doped biocarbon bed promoted the carbonation reaction and boosted the CO_2 sorption capacity(1.92 mmol/g at 50℃ and 14 kPa partial pressure of CO_2).Carbonation is slower than physical adsorption of CO_2 but wise process design could tune the operation conditions and balance capture capacity and sorption kinetics.
        Solid sorbents with enhanced capacity and selectivity towards CO_2 are crucial in the design of an efficient capture process.Among the possible alternatives,K_2CO_3-doped activated carbons have shown high CO_2 capture capacity and rapid carbonation reaction rate.In this work,a sustainable and low-cost approach is developed with a biomass-based activated carbon or biocarbon as support.The CO_2 capture performance in cyclic sorption–desorption operation and the sorption kinetics have been investigated under different scenarios in a purpose-built fixed-bed set-up.Independent of the H_2O concentration in the flue gas,a constant relative humidity(~20%)in the K_2CO_3-doped biocarbon bed promoted the carbonation reaction and boosted the CO_2 sorption capacity(1.92 mmol/g at 50℃ and 14 kPa partial pressure of CO_2).Carbonation is slower than physical adsorption of CO_2 but wise process design could tune the operation conditions and balance capture capacity and sorption kinetics.
引文
[1]H.A.Patel,J.Byun,C.T.Yavuz,Chem Sus Chem 10(2017)1303-1317.
    [2]J.B.Lee,T.H.Eom,B.S.Oh,J.I.Baek,J.Ryu,W.S.Jeon,Y.H.Wi,C.K.Ryu,Energy Proc.4(2011)1494-1499.
    [3]A.Jayakumar,A.Gomez,N.Mahinpey,Appl.Energy 179(2016)531-543.
    [4]M.Wang,A.Lawal,P.Stephenson,J.Sidders,C.Ramshaw,Chem.Eng.Res.Des.89(2011)1609-1624.
    [5]A.G.Okunev,V.E.Sharonov,A.V.Gubar,I.G.Danilova,E.A.Paukshtis,E.M.Moroz,T.A.Kriger,V.V.Malakhov,Y.I.Aristov,Russ.Chem.Bull.52(2003)359-363.
    [6]C.Zhao,C.Zhao,X.Chen,E.J.Anthony,X.Jiang,L.Duan,Y.Wu,W.Dong,Prog.Energy Combust.Sci.39(2013)515-534.
    [7]J.V.Veselovskaya,V.S.Derevschikov,T.Y.Kardash,O.A.Stonkus,T.A.Trubitsina,A.G.Okunev,Int.J.Greenh.Gas Control 17(2013)332-340.
    [8]H.Hayashi,J.Taniuchi,N.Furuyashiki,S.Sugiyama,S.Hirano,N.Shigemoto,T.Nonaka,Ind.Eng.Chem.Res.37(1998)185-191.
    [9]Y.Guo,C.Li,S.Lu,C.Zhao,Energy Fuels 29(2015)8151-8156.
    [10]C.Qin,J.Yin,J.Ran,L.Zhang,B.Feng,Appl.Energy 136(2014)280-288.
    [11]C.Zhao,Y.Guo,C.Li,S.Lu,Chem.Eng.J.254(2014)524-530.
    [12]N.Querejeta,M.Plaza,F.Rubiera,C.Pevida,Materials(Basel)9(2016)359.
    [13]Y.Guo,C.Zhao,C.Li,Chem.Eng.Technol.38(2015)891-899.
    [14]S.Brunauer,P.H.Emmett,E.Teller,J.Am.Chem.Soc.60(1938)309-319.
    [15]F.Stoeckli,Russ.Chem.Bull.50(2018)2265-2272.
    [16]H.F.Stoeckli,Carbon 19(1981)325-326.
    [17]F.Stoeckli,L.Ballerini,Fuel 70(1991)557-559.
    [18]M.V.Gil,N.álvarez-Gutiérrez,M.Martínez,F.Rubiera,C.Pevida,A.Morán,Chem.Eng.J.269(2015)148-158.
    [19]M.G.Plaza,I.Durán,N.Querejeta,F.Rubiera,C.Pevida,Ind.Eng.Chem.Res.55(2016)3097-3112.
    [20]M.G.Plaza,I.Durán,N.Querejeta,F.Rubiera,C.Pevida,Ind.Eng.Chem.Res.55(2016)6854-6865.
    [21]N.álvarez-Gutiérrez,S.García,M.V.Gil,F.Rubiera,C.Pevida,Energy Fuels 30(2016)5005-5015.
    [22]N.álvarez-Gutiérrez,M.V.Gil,F.Rubiera,C.Pevida,Fuel Process.Technol.142(2016)361-369.
    [23]I.Durán,F.Rubiera,C.Pevida,Energies 10(2017)827.
    [24]S.C.Lee,B.Y.Choi,C.K.Ryu,Y.S.Ahn,T.J.Lee,J.C.Kim,Korean J.Chem.Eng.23(2006)374-379.
    [25]Y.Guo,C.Zhao,C.Li,Y.Wu,Chem.Eng.J.260(2015)596-604.
    [26]S.C.Lee,H.J.Chae,B.Y.Choi,S.Y.Jung,C.Y.Ryu,J.J.Park,J.-I.Baek,C.K.Ryu,J.C.Kim,Korean J.Chem.Eng.28(2011)480-486.
    [27]L.Stevens,K.Williams,W.Y.Han,T.Drage,C.Snape,J.Wood,J.Wang,Chem.Eng.J.215-216(2013)699-708.
    [28]N.álvarez-Gutiérrez,M.V.Gil,F.Rubiera,C.Pevida,Chem.Eng.J.307(2017)249-257.
    [29]S.Lagergren,Handlingar 24(1898)1-39.
    [30]E.C.N.Lopes,F.S.C.dos Anjos,E.F.S.Vieira,A.R.Cestari,J.Colloid Interf.Sci.263(2003)542-547.
    [31]C.Zhao,X.Chen,C.Zhao,Ind.Eng.Chem.Res.51(2012)14361-14366.
    [32]P.K.Gbor,C.Q.Jia,Chem.Eng.Sci.59(2004)1979-1987.
    [33]N.Querejeta,M.V.Gil,C.Pevida,T.A.Centeno,J.CO2Util.26(2018)1-7.
    [34]H.Wei,S.Deng,B.Hu,Z.Chen,B.Wang,J.Huang,G.Yu,ChemSusChem 5(2012)2354-2360.
    [35]Z.Zhang,J.Zhou,W.Xing,Q.Xue,Z.Yan,S.Zhuo,S.Z.Qiao,Phys.Chem.Chem.Phys.15(2013)2523.
    [36]J.Serafin,U.Narkiewicz,A.W.Morawski,R.J.Wróbel,B.Michalkiewicz,J.CO2Util.18(2017)73-79.
    [37]J.P.Marco-Lozar,M.Kunowsky,F.Suárez-García,A.Linares-Solano,Carbon 72(2014)125-134.
    [38]B.Adeniran,E.Masika,R.Mokaya,J.Mater.Chem.A 2(2014)14696.
    [39]H.Luo,H.Chioyama,S.Thürmer,T.Ohba,H.Kanoh,Energy Fuels 29(2015)4472-4478.
    [40]C.Zhao,X.Chen,C.Zhao,Energy Fuels 26(2012)1401-1405.
    [41]C.Zhao,X.Chen,C.Zhao,Ind.Eng.Chem.Res.49(2010)12212-12216.
    [42]S.Freguia,G.T.Rochelle,AIChE J.49(2003)1676-1686.
    [43]T.Neveux,Y.Le Moullec,J.P.Corriou,E.Favre,Chem.Eng.Trans.35(2013)337-342.
    [44]G.Puxty,R.Rowland,A.Allport,Q.Yang,M.Bown,R.Burns,M.Maeder,M.Attalla,Environ.Sci.Technol.43(2009)6427-6433.
    [45]L.Dubois,D.Thomas,Chem.Eng.Technol.35(2012)513-524.
    [46]S.C.Lee,J.C.Kim,Catal.Surv.Asia 11(2007)171-185.
    [47]S.C.Lee,B.Y.Choi,T.J.Lee,C.K.Ryu,Y.S.Ahn,J.C.Kim,Catal.Today 111(2006)385-390.
    [48]Y.Guo,C.Li,S.Lu,C.Zhao,Chem.Eng.J.301(2016)325-333.
    [49]Y.Guo,C.Li,S.Lu,C.Zhao,Chem.Eng.J.308(2017)516-526.
    [50]I.Durán,F.Rubiera,C.Pevida,J.CO2Util.26(2018)454-464.
    [51]M.G.Plaza,A.S.González,C.Pevida,F.Rubiera,Fuel 140(2015)633-648.
    [52]D.D.Do,H.D.Do,Sep.Purif.Technol.20(2000)49-65.
    [53]G.Song,X.Zhu,R.Chen,Q.Liao,Y.-D.Ding,L.Chen,Chem.Eng.J.283(2016)175-183.
    [54]B.H.Hameed,I.A.W.Tan,A.L.Ahmad,Chem.Eng.J.144(2008)235-244.
    [55]L.Ai,M.Li,L.Li,J.Chem.Eng.Data 56(2011)3475-3483.
    [56]M.H.Kalavathy,T.Karthikeyan,S.Rajgopal,L.R.Miranda,J.Colloid Interface Sci.292(2005)354-362.
    [57]R.Serna-Guerrero,A.Sayari,Chem.Eng.J.161(2010)182-190.
    [58]B.Royer,N.F.Cardoso,E.C.Lima,J.C.P.Vaghetti,N.M.Simon,T.Calvete,R.C.Veses,J.Hazard.Mater.164(2009)1213-1222.
    [59]A.R.Cestari,E.F.S.S.Vieira,G.S.Vieira,L.E.Almeida,J.Hazard.Mater.138(2006)133-141.
    [60]A.R.Cestari,E.F.S.Vieira,J.D.S.Matos,D.S.C.Dos Anjos,J.Colloid.Interface Sci.285(2005)288-295.
    [61]E.W.de Menezes,E.C.Lima,B.Royer,F.E.de Souza,B.D.dos Santos,J.R.Gregório,T.M.H.Costa,Y.Gushikem,E.V.Benvenutti,J.Colloid.Interface Sci.378(2012)10-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700