Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
  • 作者:XiLong ; Fan ; Jin ; Li ; Xin ; Li ; YuanHong ; Zhong ; JunWei ; Cao
  • 英文作者:XiLong Fan;Jin Li;Xin Li;YuanHong Zhong;JunWei Cao;Department of Physics and Astronomy, Hubei University of Education;Department of Physics, Chongqing University;College of Communication, Chongqing University;Research Institute of Information Technology, Tsinghua University;
  • 英文关键词:deep neural networks;;advanced LIGO and advanced Virgo coincident detection of gravitational waves;;multiple space parameter estimation
  • 中文刊名:JGXG
  • 英文刊名:中国科学:物理学 力学 天文学(英文版)
  • 机构:Department of Physics and Astronomy, Hubei University of Education;Department of Physics, Chongqing University;College of Communication, Chongqing University;Research Institute of Information Technology, Tsinghua University;
  • 出版日期:2019-05-14
  • 出版单位:Science China(Physics,Mechanics & Astronomy)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China(Grant Nos.11873001,11633001,11673008,and 61501069);; the Natural Science Foundation of Chongqing(Grant No.cstc2018jcyjAX0767);; the Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB23040100);; Newton International Fellowship Alumni Followon Funding;; the Fundamental Research Funds for the Central Universities Project(Grant Nos.106112017CDJXFLX0014,and 106112016CDJXY300002);; Chinese State Scholarship Fund;; Newton International Fellowship Alumni Follow on Funding
  • 语种:英文;
  • 页:JGXG201906015
  • 页数:8
  • CN:06
  • ISSN:11-5849/N
  • 分类号:122-129
摘要
In this paper, we study an application of deep learning to the advanced laser interferometer gravitational wave observatory(LIGO)and advanced Virgo coincident detection of gravitational waves(GWs) from compact binary star mergers. This deep learning method is an extension of the Deep Filtering method used by George and Huerta(2017) for multi-inputs of network detectors.Simulated coincident time series data sets in advanced LIGO and advanced Virgo detectors are analyzed for estimating source luminosity distance and sky location. As a classifier, our deep neural network(DNN) can effectively recognize the presence of GW signals when the optimal signal-to-noise ratio(SNR) of network detectors ≥ 9. As a predictor, it can also effectively estimate the corresponding source space parameters, including the luminosity distance D, right ascension α, and declination δ of the compact binary star mergers. When the SNR of the network detectors is greater than 8, their relative errors are all less than 23%.Our results demonstrate that Deep Filtering can process coincident GW time series inputs and perform effective classification and multiple space parameter estimation. Furthermore, we compare the results obtained from one, two, and three network detectors;these results reveal that a larger number of network detectors results in a better source location.
        In this paper, we study an application of deep learning to the advanced laser interferometer gravitational wave observatory(LIGO)and advanced Virgo coincident detection of gravitational waves(GWs) from compact binary star mergers. This deep learning method is an extension of the Deep Filtering method used by George and Huerta(2017) for multi-inputs of network detectors.Simulated coincident time series data sets in advanced LIGO and advanced Virgo detectors are analyzed for estimating source luminosity distance and sky location. As a classifier, our deep neural network(DNN) can effectively recognize the presence of GW signals when the optimal signal-to-noise ratio(SNR) of network detectors ≥ 9. As a predictor, it can also effectively estimate the corresponding source space parameters, including the luminosity distance D, right ascension α, and declination δ of the compact binary star mergers. When the SNR of the network detectors is greater than 8, their relative errors are all less than 23%.Our results demonstrate that Deep Filtering can process coincident GW time series inputs and perform effective classification and multiple space parameter estimation. Furthermore, we compare the results obtained from one, two, and three network detectors;these results reveal that a larger number of network detectors results in a better source location.
引文
1 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),Phys.Rev.Lett.119,161101(2017),arXiv:1710.05832.
    2 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),Phys.Rev.Lett.119,141101(2017),arXiv:1709.09660.
    3 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),Phys.Rev.Lett.116,061102(2016),arXiv:1602.03837.
    4 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),Phys.Rev.Lett.116,241103(2016),arXiv:1606.04855.
    5 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),Phys.Rev.Lett.118,221101(2017),arXiv:1706.01812.
    6 J.Li,and X.L.Fan,Sci.China-Phys.Mech.Astron.60,120431(2017).
    7 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),Class.Quantum Grav.32,074001(2015),arXiv:1411.4547.
    8 F.Acernese,et al.(Virgo Collaboration),Class.Quantum Grav.32,024001(2015),arXiv:1408.3978.
    9 D.Blair,L.Ju,C.N.Zhao,L.Q.Wen,Q.Chu,Q.Fang,R.G.Cai,J.R.Gao,X.C.Lin,D.Liu,L.A.Wu,Z.H.Zhu,D.H.Reitze,K.Arai,F.Zhang,R.Flaminio,X.J.Zhu,G.Hobbs,R.N.Manchester,R.M.Shannon,C.Baccigalupi,W.Gao,P.Xu,X.Bian,Z.J.Cao,Z.J.Chang,P.Dong,X.F.Gong,S.L.Huang,P.Ju,Z.R.Luo,L.E.Qiang,W.L.Tang,X.Y.Wan,Y.Wang,S.N.Xu,Y.L.Zang,H.P.Zhang,Y.K.Lau,and W.T.Ni,Sci.China-Phys.Mech.Astron.58,120402(2015),arXiv:1602.02872.
    10 D.Blair,L.Ju,C.N.Zhao,L.Q.Wen,H.X.Miao,R.G.Cai,J.R.Gao,X.C.Lin,D.Liu,L.A.Wu,Z.H.Zhu,G.Hammond,H.J.Paik,V.Fafone,A.Rocchi,C.Blair,Y.Q.Ma,J.Y.Qin,and M.Page,Sci.China-Phys.Mech.Astron.58,120405(2015),arXiv:1602.05087.
    11 R.Biswas,L.Blackburn,J.Cao,R.Essick,K.A.Hodge,E.Katsavounidis,K.Kim,Y.M.Kim,E.O.Le Bigot,C.H.Lee,J.J.Oh,S.H.Oh,E.J.Son,Y.Tao,R.Vaulin,and X.Wang,Phys.Rev.D 88,062003(2013),arXiv:1303.6984.
    12 D.George,and E.A.Huerta,Phys.Rev.D 97,044039(2018),arXiv:1701.00008.
    13 D.George and E.A.Huerta,Phys.Lett.B,778(2018),arXiv:1711.03121.
    14 A.Mytidis,A.A.Panagopoulos,O.P.Panagopoulos,and B.Whiting,2015,arXiv:1508.02064.
    15 A.Torres-Forn′e,A.Marquina,J.A.Font,and J.M.Ib′a?nez,Phys.Rev.D 94,124040(2016),arXiv:1612.01305.
    16 K.A.Hodge,The Search for Gravitational Waves from the Coalescence of Black Hole Binary Systems in Data from the LIGO and Virgo Detectors Or:A Dark Walk through a Random Forest,Dissertation for the Doctoral Degree(California Institute of Technology,Pasadena,2014).
    17 P.T.Baker,S.Caudill,K.A.Hodge,D.Talukder,C.Capano,and N.J.Cornish,Phys.Rev.D 91,062004(2015),arXiv:1412.6479.
    18 T.Gebhard,N.Kilbertus,G.Parascandolo,I.Harry,and B.Sch¨olkopf,in Workshop on Deep Learning for Physical Sciences(DLPS)at the31st Conference on Neural Information Processing Systems(NIPS,Long Beach,2017).
    19 H.Gabbard,M.Williams,F.Hayes,and C.Messenger,Phys.Rev.Lett.120,141103(2018),arXiv:1712.06041.
    20 X.R.Li,W.L.Yu,and X.L.Fan,2017,arXiv:1712.00356.
    21 J.G.Carbonell,R.S.Michalski,and T.M.Mitchell,An overview of machine learning,in Machinelearning(Springer,Heidelberg,1983),pp.3-23.
    22 W.S.McCulloch,and W.Pitts,Bull.Math.Biophys.5,115(1943).
    23 G.A.Carpenter,Neural Networks,2,243(1989).
    24 J.Schmidhuber,Neural Networks 61,85(2015).
    25 J.Wang,SIAM J.Sci.Comput.18,1479(2006).
    26 K.Fukushima,Biol.Cybernet.36,193(1980).
    27 Y.LeCun,and Y.B.Chap,Convolutional Networks for Images,Speech,and Time Series(MIT Press,Cambridge,1998),pp.255-258.
    28 A.Krizhevsky,I.Sutskever,and G.E.Hinton,in Advances in Neural In f ormation Processing S ystems 25,edited by F.Pereira,C.J.C.Burges,L.Bottou,and K.Q.Weinberger(Curran Associates,Inc.,Nice,2012),pp.1097-1105.
    29 L.X.Li,and B.Paczy′nski,Astrophys.J.507,L59(1998).
    30 B.D.Metzger,and E.Berger,Astrophys.J.746,48(2012),arXiv:1108.6056.
    31 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),Astrophys.J.848,L12(2017),arXiv:1710.05833.
    32 D.A.Coulter,GCN 21529,1(2017).1105 Media,Inc.McLean,VA.
    33 D.A.Coulter,R.J.Foley,C.D.Kilpatrick,M.R.Drout,A.L.Piro,B.J.Shappee,M.R.Siebert,J.D.Simon,N.Ulloa,D.Kasen,B.F.Madore,A.Murguia-Berthier,Y.C.Pan,J.X.Prochaska,E.RamirezRuiz,A.Rest,and C.Rojas-Bravo,Science 358,1556(2017),arXiv:1710.05452.
    34 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),GCN 21513,1(2017).
    35 X.L.Fan,Sci.China-Phys.Mech.Astron.59,640001(2016).
    36 C.Cutler,and E.Flanagan,Phys.Rev.D 49,2658(1994).
    37 P.Jaranowski,A.Kr′olak,and B.F.Schutz,Phys.Rev.D 58,063001(1998),arXiv:9804014v1.
    38 D.Shoemaker,Advanced LIGO anticipated sensitivity curves-LIGODocument(2010).
    39 F.Acernese,M.Agathos,K.Agatsuma,D.Aisa,N.Allemandou,A.Allocca,J.Amarni,P.Astone,G.Balestri,G.Ballardin,F.Barone,J.P.Baronick,M.Barsuglia,A.Basti,F.Basti,T.S.Bauer,V.Bavigadda,M.Bejger,M.G.Beker,C.Belczynski,D.Bersanetti,A.Bertolini,M.Bitossi,M.A.Bizouard,S.Bloemen,M.Blom,M.Boer,G.Bogaert,D.Bondi,F.Bondu,L.Bonelli,R.Bonnand,V.Boschi,L.Bosi,T.Bouedo,C.Bradaschia,M.Branchesi,T.Briant,A.Brillet,V.Brisson,T.Bulik,H.J.Bulten,D.Buskulic,C.Buy,G.Cagnoli,E.Calloni,C.Campeggi,B.Canuel,F.Carbognani,F.Cavalier,R.Cavalieri,G.Cella,E.Cesarini,E.C.Mottin,A.Chincarini,A.Chiummo,S.Chua,F.Cleva,E.Coccia,P.F.Cohadon,A.Colla,M.Colombini,A.Conte,J.P.Coulon,E.Cuoco,A.Dalmaz,S.D’Antonio,V.Dattilo,M.Davier,R.Day,G.Debreczeni,J.Degallaix,S.Del′eglise,W.D.Pozzo,H.Dereli,R.D.Rosa,L.D.Fiore,A.D.Lieto,A.D.Virgilio,M.Doets,V.Dolique,M.Drago,M.Ducrot,G.Endr?oczi,V.Fafone,S.Farinon,I.Ferrante,F.Ferrini,F.Fidecaro,I.Fiori,R.Flaminio,J.D.Fournier,S.Franco,S.Frasca,F.Frasconi,L.Gammaitoni,F.Garufi,M.Gaspard,A.Gatto,G.Gemme,B.Gendre,E.Genin,A.Gennai,S.Ghosh,L.Giacobone,A.Giazotto,R.Gouaty,M.Granata,G.Greco,P.Groot,G.M.Guidi,J.Harms,A.Heidmann,H.Heitmann,P.Hello,G.Hemming,E.Hennes,D.Hofman,P.Jaranowski,R.J.G.Jonker,M.Kasprzack,F.K′ef′elian,I.Kowalska,M.Kraan,A.Kr′olak,A.Kutynia,C.Lazzaro,M.Leonardi,N.Leroy,N.Letendre,T.G.F.Li,B.Lieunard,M.Lorenzini,V.Loriette,G.Losurdo,C.Magazz′u,E.Majorana,I.Maksimovic,V.Malvezzi,N.Man,V.Mangano,M.Mantovani,F.Marchesoni,F.Marion,J.Marque,F.Martelli,L.Martellini,A.Masserot,D.Meacher,J.Meidam,F.Mezzani,C.Michel,L.Milano,Y.Minenkov,A.Moggi,M.Mohan,M.Montani,N.Morgado,B.Mours,F.Mul,M.F.Nagy,I.Nardecchia,L.Naticchioni,G.Nelemans,I.Neri,M.Neri,F.Nocera,E.Pacaud,C.Palomba,F.Paoletti,A.Paoli,A.Pasqualetti,R.Passaquieti,D.Passuello,M.Perciballi,S.Petit,M.Pichot,F.Piergiovanni,G.Pillant,A.Piluso,L.Pinard,R.Poggiani,M.Prijatelj,G.A.Prodi,M.Punturo,P.Puppo,D.S.Rabeling,I.R′acz,P.Rapagnani,M.Razzano,V.Re,T.Regimbau,F.Ricci,F.Robinet,A.Rocchi,L.Rolland,R.Romano,D.Rosi′nska,P.Ruggi,E.Saracco,B.Sassolas,F.Schimmel,D.Sentenac,V.Sequino,S.Shah,K.Siellez,N.Straniero,B.Swinkels,M.Tacca,M.Tonelli,F.Travasso,M.Turconi,G.Vajente,N.van Bakel,M.van Beuzekom,J.F.J.van den Brand,C.Van Den Broeck,M.V.van der Sluys,J.van Heijningen,M.Vas′uth,G.Vedovato,J.Veitch,D.Verkindt,F.Vetrano,A.Vicer′e,J.Y.Vinet,G.Visser,H.Vocca,R.Ward,M.Was,L.W.Wei,M.Yvert,A.Z.˙zny,and J.P.Zendri,Class.Quantum Grav.32,024001(2015),arXiv:1408.3978.
    40 B.F.Schutz,Class.Quantum Grav.28,125023(2011),arXiv:1102.5421.
    41 B.S.Sathyaprakash,and B.F.Schutz,Living Rev.Relativ.12,2(2009),arXiv:0903.0338.
    42 B.P.Abbott,et al.(LIGO Scientific Collaboration and Virgo Collaboration),Phys.Rev.Lett.116,241102(2016),arXiv:1602.03840.
    43 K.O’Shea,and R.Nash,arXiv:1511.08458(2015).
    44 D.Mishkin,N.Sergievskiy,and J.Matas,Comput.Vision Image Underst.161,11(2017).
    45 R.Collobert,J.Weston,L.Bottou,M.Karlen,K.Kavukcuoglu,and P.Kuksa,J.Mach.Learn.Res.12,2493(2011).
    46 Y.Zheng,Q.Liu,E.Chen,Y.Ge,and J.L.Zhao,Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks,Web-Age Information Management(Springer,Cham,2014),pp.298-310.
    47 J.Snoek,H.Larochelle,and R.P.Adams,in Advances in Neural Information Processing Systems 25,edited by F.Pereira,C.J.C.Burges,L.Bottou,and K.Q.Weinberger(Curran Associates,Inc.,New York,2012),pp.2951-2959.
    48 L.X.Xie,and A.Yuille,arXiv:1703.01513v1.
    49 D.P.Kingma,and J.Ba,arXiv:1412.6980.
    50 D.E.Rumelhart,G.E.Hinton,and R.J.Williams,Cogn.Model.5 1(1988).
    51 J.Li,J.Cheng,J.Shi,and F.Huang,Brief Introduction of Back Propagation(BP)Neural Network Algorithm and Its Improvement,Advances in Computer Science and Information Engineering(Springer,Berlin,2012),pp.553-558.
    52 L.Wen,and Y.Chen,Phys.Rev.D 81,082001(2010),arXiv:1003.2504.
    53 Z.J.Cao,Sci.China-Phys.Mech.Astron.59,110431(2016).
    54 H.Gao,Sci.China-Phys.Mech.Astron.61,059531(2018).
    55 T.P.Li,S.L.Xiong,S.N.Zhang,F.J.Lu,L.M.Song,X.L.Cao,Z.Chang,G.Chen,L.Chen,T.X.Chen,Y.Chen,Y.B.Chen,Y.P.Chen,W.Cui,W.W.Cui,J.K.Deng,Y.W.Dong,Y.Y.Du,M.X.Fu,G.H.Gao,H.Gao,M.Gao,M.Y.Ge,Y.D.Gu,J.Guan,C.C.Guo,D.W.Han,W.Hu,Y.Huang,J.Huo,S.M.Jia,L.H.Jiang,W.C.Jiang,J.Jin,Y.J.Jin,B.Li,C.K.Li,G.Li,M.S.Li,W.Li,X.Li,X.B.Li,X.F.Li,Y.G.Li,Z.J.Li,Z.W.Li,X.H.Liang,J.Y.Liao,C.Z.Liu,G.Q.Liu,H.W.Liu,S.Z.Liu,X.J.Liu,Y.Liu,Y.N.Liu,B.Lu,X.F.Lu,T.Luo,X.Ma,B.Meng,Y.Nang,J.Y.Nie,G.Ou,J.L.Qu,N.Sai,L.Sun,Y.Tan,L.Tao,W.H.Tao,Y.L.Tuo,G.F.Wang,H.Y.Wang,J.Wang,W.S.Wang,Y.S.Wang,X.Y.Wen,B.B.Wu,M.Wu,G.C.Xiao,H.Xu,Y.P.Xu,L.L.Yan,J.W.Yang,S.Yang,Y.J.Yang,A.M.Zhang,C.L.Zhang,C.M.Zhang,F.Zhang,H.M.Zhang,J.Zhang,Q.Zhang,S.Zhang,T.Zhang,W.Zhang,W.C.Zhang,W.Z.Zhang,Y.Zhang,Y.Zhang,Y.F.Zhang,Y.J.Zhang,Z.Zhang,Z.L.Zhang,H.S.Zhao,J.L.Zhao,X.F.Zhao,S.J.Zheng,Y.Zhu,Y.X.Zhu,and C.L.Zou,Sci.China-Phys.Mech.Astron.61,031011(2018),arXiv:1710.06065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700