A novel unified model predicting flow stress and grain size evolutions during hot working of non-uniform as-cast 42CrMo billets
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A novel unified model predicting flow stress and grain size evolutions during hot working of non-uniform as-cast 42CrMo billets
  • 作者:Lianggang ; GUO ; Fengqi ; WANG ; Pengliang ; ZHEN ; Xuechao ; LI ; Mei ; ZHAN
  • 英文作者:Lianggang GUO;Fengqi WANG;Pengliang ZHEN;Xuechao LI;Mei ZHAN;School of Materials Science and Engineering, Northwestern Polytechnical University;
  • 英文关键词:Cast preformed forming process;;Flow stress;;Grain size;;Non-uniform as-cast 42CrMo billet;;Ring rolling;;Unified model
  • 中文刊名:HKXS
  • 英文刊名:中国航空学报(英文版)
  • 机构:School of Materials Science and Engineering, Northwestern Polytechnical University;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Journal of Aeronautics
  • 年:2019
  • 期:v.32;No.155
  • 基金:supported by the National Natural Science Foundation of China (No’s. 51575448 and 51135007)
  • 语种:英文;
  • 页:HKXS201902025
  • 页数:15
  • CN:02
  • ISSN:11-1732/V
  • 分类号:321-335
摘要
The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process.
        The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process.
引文
1.Lin YC,Chen MS,Zhong J.Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42Cr Mo steel.Mater Des 2009;30(3):908-13.
    2.Ju L,Li YT,Fu JH,Lei BF,Qi HP.Constitutive modeling for flow behavior of as-cast 1026 carbon steel under hot compression experiments.ASME 2015 international mechanical engineering congress and exposition;2015 Nov 13-19;Houston,Texas American Society of Mechanical Engineers;2015.p V02BT02A049.
    3.Medvedeva A,Bergstr?m J,Gunnarsson S,Andersson J.Hightemperature properties and microstructural stability of hot-work tool steels.Mater Sci Eng A 2009;523(1):39-46.
    4.Zhu ZW,Lu YS,Xie QJ,Li DY,Gao N.Mechanical properties and dynamic constitutive model of 42Cr Mo steel.Mater Des2017;119:171-9.
    5.Lindgren LE,Hao Q,Wedberg D.Improved and simplified dislocation density based plasticity model for AISI 316L.Mech Mater 2017;108:68-76.
    6.Zhu S,Yang H,Guo LG,Di WJ,Fan Y.Simulation of microstructure evolution during the whole process of radial-axial rolling of TA15 titanium alloy ring.Acta Aeronaut Astronaut Sin2014;35(11):3145-55[Chinese].
    7.Fan XG,Yang H,Gao PF.Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy.Mater Des 2013;51(4):34-42.
    8.Kumar VA,Gupta RK,Murty SVSN,Prasad AD.Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy.J Alloys Compd 2016;676:527-41.
    9.Wang HP,Yang SJ,Hu L,Wei B.Molecular dynamics prediction and experimental evidence for density of normal and metastable liquid zirconium.Chem Phys 2016;653:112-6.
    10.Wang HP,LüP,Zhou K,Wei BB.Thermal expansion of Ni3Al intermetallic compound:experiment and simulation.Chin Phys Lett 2016;33(4):046502.
    11.Chen HQ,Wang QC,Guo HG.Research on the casting forging precision forming process of alternator poles.J Mater Process Technol 2002;129(1):330-2.
    12.Guo LG,Dong KK,Yang H,Zheng WD,Zhang J.Temperature field and extrusion load in needle piercing extrusion process based on ingot billet for large 7075 aluminum alloy tube.Appl Mech Mater 2012;217-219:1734-9.
    13.Li J,Li YT,Qi HP,Chen HQ.Effects of initial rolling temperature on rolling deformation and microstructure evolution of 42Cr Mo casting ring blank.ASME 2013 international mechanical engineering congress and exposition;2013 Nov 15-21;San Diego,California,USA:American Society of Mechanical Engineers;2013.p.V02AT02A085.
    14.Han Y,Wu H,Wei Z,Zou DN,Liu GW,Qiao GJ.Constitutive equation and dynamic recrystallization behavior of as-cast254SMO super-austenitic stainless steel.Mater Des2015;69:230-40.
    15.Luo J,Li MQ,Li XL,Shi YP.Constitutive model for high temperature deformation of titanium alloys using internal state variables.Mech Mater 2010;42(2):157-65.
    16.Lin YC,Wen DX,Huang YC,Chen XM,Chen XW.A unified physically based constitutive model for describing strain hardening effect and dynamic recovery behavior of a Ni-based superalloy.JMater Res 2015;30(24):3784-94.
    17.Lin YC,Wen DX,Chen MS,Liu YX,Chen XM,Ma X.Improved dislocation density-based models for describing hot deformation behaviors of a Ni-based superalloy.J Mater Res 2016;31(16):2415-29.
    18.Fan XG,Yang H.Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution.Int J Plast 2011;27(11):1833-52.
    19.Hu GX,Cai X,Rong YH,editors.Fundamentals of material science.3rd ed.Shanghai:Shanghai Jiao Tong University Press;2010.p.183-5[Chinese].
    20.Xu M,Yang WQ,Liang JX,Meng Y,Zheng L.Experimental study on the correlation between intermediate temperature embrittlement and equi-cohesive temperature.J Alloys Comp2014;610(610):288-93.
    21.Fei WD,Yue HY,Wang LD.Equicohesive temperature of the interface and matrix and its effect on the tensile plasticity of Al18B4O33 whiskers reinforced aluminum composite at elevated temperatures.Mater Chem Phys 2010;119(3):515-8.
    22.Kocks UF,Mecking H.Physics and phenomenology of strain hardening:the FCC case.Prog Mater Sci 2003;48(3):171-273.
    23.Huo YM,Bai Q,Wang BY,Lin JG,Zhou J.A new application of unified constitutive equations for cross wedge rolling of a highspeed railway axle steel.J Mater Process Technol 2015;223(223):274-83.
    24.Qi HP,Li YT.Metadynamic recrystallization of the As-cast42Cr Mo Steel after Normalizing and Tempering during Hot Compression.Chin J Mech Eng 2012;25(5):853-9.
    25.Li N,Lin JG,Dean TA,Dry D,Balint D.Materials modelling for selective heating and press hardening of boron steel panels with graded microstructures.Proc Eng 2014;81:1675-81.
    26.Chinese Mechanical Engineering Society.Forging manual.Beijing China Machine Press;2002.p.1[Chinese].
    27.Lin YC,Chen MS,Zhang J.Microstructural evolution in 42Cr Mo steel during compression at elevated temperatures.Mater Lett2008;62(14):2132-5.
    28.Gao PF,Yang H,Fan XG,Zhu S.Unified modeling of flow softening and globularization for hot working of two-phase titanium alloy with a lamellar colony microstructure.J Alloys Comp 2014;600:78-83.
    29.Mecking H,Kocks UF,Hartig C.Taylor factors in materials with many deformation modes.Scripta Mater 1996;35(4):465-71.
    30.Fan XG.Study on microstructure evolution during isotherma local loading forming of large-scale integral complex component of titanium alloys[dissertation].Xi’an:Northwestern Polytechnical University;2012[Chinese].
    31.Beyerlein IJ,Tome’CN.A dislocation-based constitutive law for pure Zr including temperature effects.Int J Plasticity 2008;24(5):867-95.
    32.Nes E,Pettersen T,Marthinsen K.On the mechanisms of work hardening and flow-stress saturation.Scripta Mater 2000;43(1):55-62.
    33.Nemat-Nasser S,Guo WG.Thermomechanical response of HSLA-65 steel plates:experiments and modeling.Mech Mater2005;37(2):379-405.
    34.Chen MS,Lin YC,Ma XS.The kinetics of dynamic recrystallization of 42Cr Mo steel.Mater Sci Eng A 2012;556:260-6.
    35.Andrade-Campos A,Thuillier S,Pilvin P,Teixeira-Dias F.On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models.Int J Plast2007;23(8):1349-79.
    36.Lin J,Yang JB.GA-based multiple objective optimization for determining viscoplastic constitutive equations for superplastic alloys.Int J Plast 1999;15(11):1181-96.
    37.Zhou G,Hua L,Qian DS.3D coupled thermo-mechanical FEanalysis of roll size effects on the radial-axial ring rolling process.Comp Mater Sci 2011;50(3):911-24.
    38.Qian DS,Pan Y.3D coupled macro-microscopic finite element modelling and simulation for combined blank-forging and rolling process of alloy steel large ring.Comp Mater Sci 2013;70:24-36.
    39.Guo LG,Yang H,Di WJ,Chen FL,Zhu S.Filling rules in thinwalled and ribbed conical ring rolling for TC4 titanium alloy.Acta Aeronaut Astronaut Sin 2015;36(8):2798-806[Chinese].
    40.Guo LG,Chen JH,He Y,Gu RJ.Response rules of strain and temperature fields to roll sizes during hot rolling process of TC4titanium alloy conical ring.Acta Aeronaut Astronaut Sin 2013;34(6):1463-73[Chinese].
    41.Guo LG,Yang H,Jin JC.Design method of blank size for radialaxial ring rolling.J Mech Eng 2010;46(24):1-9[Chinese].
    42.Zhou G,Hua L,Qian DS,Shi DF,Li HX.Effects of axial rolls motions on radial-axial rolling process for large-scale alloy steel ring with 3D coupled thermo-mechanical FEA.Int J Mech Sci2012;59(1):1-7.
    43.Davey K,Ward MJ.A practical method for finite element ring rolling simulation using the ALE flow formulation.Int J Mech Sci2002;44(1):165-90.
    44.Hua L,Huang XG,Zhu CD.Ring rolling theory and technology.Beijing:China Machine Press;2001.p.33-5[Chinese].
    45.Zhu S,Yang H,Guo LG,Hu LL,Chen XQ.Research on the effects of coordinate deformation on radial-axial ring rolling process by FE simulation based on in-process control.Int J Adv Manuf Technol 2014;72(1-4):57-68.
    46.Guo LG,Yang H.Towards a steady forming condition for radialaxial ring rolling.Int J Mech Sci 2011;53(4):286-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700