西天山小流域动态融雪过程及其与气温的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Snowmelt Process and Its Relationship with Air Temperature in a Small Watershed in the West Tianshan Mountains
  • 作者:古力米热·哈那提 ; 海米旦·贺力力 ; 刘迁迁 ; 苏里坦
  • 英文作者:Gulimire Hanati;Haimidan Helili;LIU Qian-qian;SU Litan;Xinjiang Institute of Water Resources and Hydropower Research;Party School of Xinjiang Uygur Autonomous Region Committee of the Communist Party of China;State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences;College of Resources and Environment,University of Chinese Academy of Science;
  • 关键词:小流域 ; 气温 ; 雪深 ; 降雪量 ; 融雪速率 ; 西天山
  • 英文关键词:small watershed;;air temperature;;snow cover depth;;snowfall;;snowmelt rate;;west Tianshan Mountains
  • 中文刊名:GHQJ
  • 英文刊名:Arid Zone Research
  • 机构:新疆水利水电科学研究院水资源研究所;中共新疆维吾尔自治区委员会党校;中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室;中国科学院大学资源与环境学院;
  • 出版日期:2019-07-15
  • 出版单位:干旱区研究
  • 年:2019
  • 期:v.36
  • 基金:新疆少数民族特培项目(2019D03004);; 国家自然科学基金项目(U1603342,U1403182);; 自治区公益性项目(KY2018121)资助
  • 语种:中文;
  • 页:GHQJ201904002
  • 页数:8
  • CN:04
  • ISSN:65-1095/X
  • 分类号:14-21
摘要
利用西天山阿热都拜小流域积雪、融雪和气象观测场2017—2018年每30 min的同步降雪、融雪和气温观测数据,对全年积雪期较短时间尺度上的融雪动态过程及其与气温的关系进行了对比分析。结果表明:山区降雪表现为"先升后降"的总体特征。稳定积雪期集中在2017年12月27日至2018年3月8日,最大降雪速率高达9. 6mm·h~(-1)(雪水当量值,转化成新鲜雪深值为96. 5 mm·h~(-1))。山区融雪过程的变化规律与降雪变化正好相反,呈现出"先降后升"的变化特征。融雪变化分为3个阶段,第一阶段:随着气温的下降,融雪速率下降,融雪速率由3. 24 mm·h~(-1)逐渐下降至0 mm·h~(-1);第二阶段:当气温低于融雪的临界温度(-13. 5-12. 0℃)时,不产生融雪;第三阶段:随着气温的回升,融雪速率从0 mm·h~(-1)逐渐上升至3. 87 mm·h~(-1)。在全年融雪与气温的大数据关系中,融雪量与气温的相关性系数不是很显著,其相关性系数为0. 708;在无降水干扰下,7 d平均同步融雪量与气温的相关性系数处于显著水平,Pearson相关性系数为0. 907,R~2=0. 823;当进一步考虑滞后效应后,融雪量与气温的相关性系数提升至极显著的线性关系,相关性系数高达0. 943,R~2=0. 889,均通过了0. 01显著性水平的双尾检验。在西天山阿热都拜小流域融雪量的变化过程与气温的变化过程有着密切的相关性。这种融雪量对气温变化的响应关系及其分析方法,对于提高应对未来气候变化的能力和预防洪灾及水资源管理具有一定的参考价值。
        Snowfall,snowmelt and air temperature in a small watershed named as Aredubai in the west Tianshan Mountains were synchronously observed every 30 minutes from 2017 to 2018,and the relationship between snowmelt and air temperature was analyzed. The results showed that the snowfall in the mountainous area increased at first and then decreased. The duration of snow cover accumulation was from December 27,2017 to March 8,2018,and the maximum snowfall intensity was as high as 9. 6 mm·h~(-1) (when the value of snow water was converted into fresh snow depth,it was 96. 5 mm·h~(-1)). The rule of snowmelt in the mountainous area was opposite to that of snowfall,that is,the snowmelt was decreased at first and then increased. The snowmelt was divided into three stages. The snowmelt rate was gradually decreased from 3. 24 mm·h~(-1) to 0 mm·h~(-1) with the decrease of air temperature at the first stage. The snowmelt did not occur when the air temperature was lower than the critical temperature of snowmelt(-13. 5--12. 0 ℃) at the second stage. The snowmelt rate was gradually increased from 0 mm·h~(-1) to 3. 87 mm·h~(-1) with the increase of air temperature at the third stage. In the big data relation between snowmelt and air temperature,the correlation coefficient between snowmelt and air temperature was not so significant,and the correlation was 0. 708. Under the conditions without precipitation,the correlation coefficient between the 7-day average snowmelt and air temperature was significant,the Pearson correlation coefficient was 0. 907,and R~2= 0. 823.When the hysteresis was further considered,the correlation coefficient between snowmelt and air temperature was increased significantly,the correlation coefficient was as high as 0. 943,and R~2= 0. 889,which all passed the twotailed test at significance level 0. 01. There was a close correlation between the dynamic change of snowmelt and air temperature in the small watershed named as Aredubai in the west Tianshan Mountains. The response relationship and analysis method of snowmelt to temperature change have certain reference value for improving the ability to cope with future climate change and preventing flood and water resources management.
引文
[1]Li C B,Qi J G,Wang Shuaibing,et al.Spatiotemporal characteristics of alpine snow and ice melt under a changing regional climate:A case study in Northwest China[J].Quaternary International,2015,358:126-136.
    [2]Braithwaite R.Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow[J].Journal of Hydrology,2008,186(54):437-444.
    [3]刘艳,李杨,张璞.玛纳斯河流域融雪径流与积雪---气象因子分析[J].水土保持研究,2010,17(2):145-149.[Liu Yan,Li Yang,Zhang Pu.Correlation analysis on snow-climate factors and its effects on snowmelt runoff in Manasi River Basin[J].Research of Soll and Water Conservation,2010,17(2):145-149.]
    [4]郭玲鹏,李兰海,徐俊荣,等.气温变化条件下融雪速率和土壤水分变化的同步观测试验[J].干旱区研究,2012,29(5):890-897.[Guo Lingpeng,Li Lanhai,Xu Junrong,et al.Experimental study on simultaneous observation of snowmelt and soil moisture content under air temperature increase[J].Arid Zone Research,2012,29(5):890-897.]
    [5]杨绍富,刘志辉,闫彦,等.融雪期土壤湿度与土壤温度、气温的关系[J].干旱区研究,2008,25(5):642-646.[Yang Shaofu,Liu Zhihui,Yan Yan,et al.Preliminary study on soil humidity and its relationships with soil temperature and air temperature in snow melting season[J].Arid Zone Research,2008,25(5):642-646.]
    [6]张娜,范昊明,许秀泉.辐射能量对不同深度和密度积雪持水能力及融雪水量的影响[J].沈阳农业大学学报,2017,48(2):250-255.[Zhang Na,Fan Haoming,Xu Xiuquan.Effects of radiation energy on snow water-holding capacity and melt-water amount in different depth and density[J].Journal of Shenyang Agricultural University,2017,48(2):250-255.]
    [7]王鹏,穆振侠.KM河流域融雪径流与积雪面积---气温关系分析[J].水资源与水工程学报,2013,24(4):28-36.[Wang Peng,Mu Zhenxia.Study on relationship of snowmelt runoff with snow area and temperature in KM River Basin[J].Journal of Water Resource and Water Engineering,2013,24(4):28-36.]
    [8]周扬,徐维新,张娟,等.2013-2015年青藏高原玛多地区两次动态融雪过程及其与气温关系对比分析[J].自然资源学报,2017,32(1):101-133.[Zhou Yang,Xu Weixin,Zhang Juan,et al.A comparative analysis of the two dynamic snow-melting process and their relationship with air temperature during 2013-2015 in the area of Maduo,Tibetan Plateau[J].Journal of Natural Resources,2017,32(1):101-133.]
    [9]杨俊华,秦翔,吴锦奎,等.祁连山老虎沟流域春季积雪属性的分布及变化特征[J].冰川冻土,2005,34(5):1 091-1 095.[Yang Junhua,Qin Xiang,Hao Jinkui,et al.Simulating the energy and mass balances on the Laohugou Glacier No.12 in the Qilian Mountains[J].Journal of Glaciology and Geocryology,2005,34(5):1 091-1 095.]
    [10]仇家琪.积雪常规观测术语的含义及其表达---介绍联合国教科文组织雪崩图集中的术语和分类[J].冰川冻土,1986,8(1):89-93.[Chou Jiaqi.The meaning and expression of the term of the snow cover:The terminology and classification of the concentration of the United Nations Educational,Scientific and Cultural Organization[J].Journal of Glaciology and Geocryology,1986,8(1):89-93.]
    [11]康丽娟,巴特尔·巴克,罗那那,等.1961-2013年新疆气温和降水的时空变化特征分析[J].新疆农业科学,2018,55(1):123-133.[Kang Lijuan,Batur Bake,Luo Nana,et al.Spatialtemporal variations of temperature and precipitation in Xinjiang from 1961 to 2013[J].Xinjiang Agricultural Sciences,2018,55(1):123-133.]
    [12]康丽娟,巴特尔·巴克,罗那那,等.SRM融雪径流模型在黑河流域上游的模拟研究[J].冰川冻土,2008,30(5):769-775.[Kang Lijuan,Batur Bake,Luo Nana,et al.The snowmelt runoff model applied in the upper Heihe River Basin[J].Journal of Glaciology and Geocryology,2008,30(5):769-775.]
    [13]周扬,徐维新,白爱娟,等.青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J].高原气象,2017,36(1):24-32.[Zhou Yang,Xu Weixin,Bai Aijuan,et al.Dynamic snow-melting process and its relationship with air temperature in Tuotuohe Qinghai-Xizang plateau[J].Plateau Meteorology,2017,36(1):24-32.]
    [14]Mclaughlin D.An integrated approach to hydrologic data assimilation:Interpolation,smoothing and filtering[J].Advances in Water Resources,2002,25(8-12):1 275-1 286.
    [15]Alexander P,Gong G.Modeled surface air temperature response to snow depth variability[J].Journal of Geophysics Research,116(D14):14105.DOI:10.1029/2010JD014908.
    [16]Kobierska F,Jonas T,Magnusson J,et al.Climate change effects on snow melt and discharge of a partly glacierized watershed in Central Switzerland[J].Applied Geochemistry,2011,26:S60-S62.
    [17]Khadka D,Babel M,Shrestha S,et al.Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan(HKH)region[J].Journal of Hydrology,2014,511:49-60.
    [18]Singh P,Kumar N.Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan River[J].Journal of Hydrology,1997,193:316-350.
    [19]Meri9 L J.The Measurement and Modeling of Snow Melt in Subarctic Site Using Low Cost Temperature Loggers[D].Oulu:University of Oulu Faculty of Technology,2015.
    [20]Zhang F,Zhang H B,Hagen S C,et al.Snow cover and runoff modeling in a high mountain catchment with scare data:Effects of temperature and precipitation[J].Hydrological Processes,2015,291:52-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700