THE IMPACT OF HORIZONTAL RESOLUTION ON THE INTENSITY AND MICROSTRUCTURE OF SUPER TYPHOON USAGI
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE IMPACT OF HORIZONTAL RESOLUTION ON THE INTENSITY AND MICROSTRUCTURE OF SUPER TYPHOON USAGI
  • 作者:文映方 ; 刘宇迪 ; 谭伟才 ; 彭科曼 ; 陈海凤
  • 英文作者:WEN Ying-fang;LIU Yu-di;TAN Wei-cai;PENG Ke-man;CHEN Hai-feng;College of Meteorology and Oceanography, Defense University of Science and Technology;Guangzhou Meteorological Bureau;Unit No.75839 of People's Liberation Army;Guiyang Meteorological Bureau;
  • 英文关键词:typhoon;;horizontal resolution;;microstructure;;Usagi;;numerical simulation
  • 中文刊名:RQXB
  • 英文刊名:热带气象学报(英文版)
  • 机构:College of Meteorology and Oceanography, Defense University of Science and Technology;Guangzhou Meteorological Bureau;Unit No.75839 of People's Liberation Army;Guiyang Meteorological Bureau;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Tropical Meteorology
  • 年:2019
  • 期:v.25
  • 基金:National Natural Science Foundation of China(41875060)
  • 语种:英文;
  • 页:RQXB201901003
  • 页数:10
  • CN:01
  • ISSN:44-1409/P
  • 分类号:26-35
摘要
Typhoon Usagi(1319) was simulated by using the Advanced Weather Research and Forecasting numerical model(WRF) with different horizontal resolution to understand the impact of horizontal resolution on the intensity and characteristics of typhoon's microstructures(including dynamic and microphysical structure). The simulated results show that the improvement of horizontal resolution from 5 km to 1 km has little impact on the track which is comparable to real results, but has a significant impact on the intensity and microstructures, and especially, the impact on wind speed at 10 m height, the vertical movement and precipitation intensity is the greatest. When the resolution is increased to 1 km, the intensity and characteristics of typhoon's microstructures can be simulated better. In lower resolution simulations, some structural characteristics, including more asymmetrical and more outward tilted eyewall, and less water vapor flux on sea surface, work together to weaken typhoon intensity.
        Typhoon Usagi(1319) was simulated by using the Advanced Weather Research and Forecasting numerical model(WRF) with different horizontal resolution to understand the impact of horizontal resolution on the intensity and characteristics of typhoon's microstructures(including dynamic and microphysical structure). The simulated results show that the improvement of horizontal resolution from 5 km to 1 km has little impact on the track which is comparable to real results, but has a significant impact on the intensity and microstructures, and especially, the impact on wind speed at 10 m height, the vertical movement and precipitation intensity is the greatest. When the resolution is increased to 1 km, the intensity and characteristics of typhoon's microstructures can be simulated better. In lower resolution simulations, some structural characteristics, including more asymmetrical and more outward tilted eyewall, and less water vapor flux on sea surface, work together to weaken typhoon intensity.
引文
[1]WEISMAN M L,SKAMAROCK W C,KLEMP J B.The resolution dependence of explicitly modeled convective systems[J].Mon Wea Rev,1997,125(4):527-548.
    [2]DENG Lian-tang,SHI Xue-li,YAN Zhi-hui.Mesoscale simulation of heavy rainfall in the Huaihe river valley in July 2003:Effects of different horizontal resolutions[J].JTrop Meteor,2012,28(2):167-176(in Chinese).
    [3]ZHANG Yu,GUO Zhen-hai,ZHANG Huang-yu,et al.Analysis of mesoscale numerical model’s ability of atmospheric multi-scale characteristics simulation in variety resolution[J].J Atmos Sci,2010,34(3):653-660(in Chinese).
    [4]DAVIS C,WANG W,CHEN S S,et al.Prediction of landfalling hurricanes with the Advanced Hurricane WRFModel[J].Mon Wea Rev,2008,136(6):1990-2005.
    [5]GENTRY M S,LACKMANN G.Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J].Mon Wea Rev,2010,138(3):688-704.
    [6]CHEN S S,PRICE J F,ZHAO W,et al.The CBLAST-Hurricane Program and the next generation fully coupled atmosphere-wave-ocean models for hurricane research and Prediction[J].Bull Amer Meteor Soc,2007,88(3):311-317.
    [7]YAU M K,LIU Y,ZHANG D L,et al.A multiscale numerical study of Hurricane Andrew(1992),Part VI:Small scale inner-core structures and wind streaks[J].Mon Wea Rev,2004,132(6):1410-1433.
    [8]McFARQUHAR G M,BLACK R A.Observations of particle size and phase in tropical cyclones:Implications for mesoscale modeling of microphysical processes[J].JAtmos Sci,2004,61(4):422-439.
    [9]ROGERS R F,BLACK M L,CHEN S S,et al.An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones,Part I:Comparisons with observations[J].J Atmos Sci,2007,64(6):1811-1834.
    [10]CHENG Rui,YU Ru-cong,XU You-ping,et al.Numerical research on intensity change and structure feature of Typhoon Rananim near shore:Impact of cloud microphysical parameterization on intensity and track[J].Acta Meteor Sinica,2009,67(5):777-789(in Chinese).
    [11]HE Hui-zhong,CHENG Ming-hu,ZHOU Feng-xian.3Dstructure of rain and cloud hydrometeors for Typhoon Kujira(0302)[J].J Atmos Sci,2006,30(3):491-502(in Chinese).
    [12]EMANUEL K A.An air-sea interaction theory for tropical cyclone,Part I:Steady state maintenance[J].JAtmos Sci,1986,43(6):585-604.
    [13]DOUGHERTY F C,KIMBALL S K.The sensitivity of hurricane simulations to the Distribution of vertical levels in MM5[J].Mon Wea Rev,2006,134(7):1987-2008.
    [14]MOLINARI J,DUDEK M.Parameterization of convective precipitation in mesoscale numerical models:A critical review[J].Mon Wea Rev,1992,120(2):326-344.
    [15]GRELL GA,DEVENYI D.A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J].Geophys Res Lett,2002,29(14):38-41.
    [16]FIERRO A O,ROGERS R F,MARKS F D,et al.The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW Model[J].Mon Wea Rev,2009,137(11):3717-3743.
    [17]LIM K S,HONG S Y.Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei(CCN)for weather and climate models[J].Mon Wea Rev,2011,138(5):1587-1612.
    [18]MLAWER E J,TAUBMAN S J,BROWN P D,et al.Radiative transfer for inhomogeneous atmosphere:RRTM,a validated correlated-k model for the longwave[J].J Geophys Res,1997,102(D14):16663-16682.
    [19]DUDHIA J.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].J Atmos Sci,1989,46(20):3077-3107.
    [20]HONG S Y,NONG Y,DUDHIA J.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Mon Wea Rev,2006,134(9):2318-2341.
    [21]YING M,ZHANG W,YU H,et al.An overview of the China Meteorological Administration tropical cyclone database[J].J Atmos Oceanic Technol,2014,31(2):287-301.
    [22]GOERSS J S.Prediction of tropical cyclone track forecast error for Hurricanes Katrina,Rita,and Wilma[R].27th Conf on Hurricanes and Tropical Meteorology,2006,Monterey,CA,Amer Meteor Soc,2006,11A.1.
    [23]JORGENSEN D P,ZIPSER E J,LeMONE M A.Vertical motions in intense hurricanes[J].J Atmos Sci,1985,42(8):839-856.
    [24]MARKS F D,HOUZE R A.Inner core structure of Hurricane Alicia from airborne Doppler radar observations[J].J Atmos Sci,1987,44(9):1296-1317.
    [25]BLACK M L,BURPEE R W,MARKS F D.Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities[J].J Atmos Sci,1996,53(13):1887-1909.
    [26]EASTIN M D,GRAY W M,BLACK P G.Buoyancy of convective vertical motions in the inner core of intense hurricanes,Part I:General statistics[J].Mon Wea Rev,2005,133(1):188-208.
    [27]MARKS F D,BLACK P G,MONTGOMERY M T,et al.Structure of the eye and eyewall of Hurricane Hugo(1989)[J].Mon Wea Rev,2008,136(4):1237-1259.
    [28]SAMSURY C E,ZIPSER E J.Secondary wind maxima in hurricanes:Airflow and relationship to rainbands[J].Mon Wea Rev,1995,123(12):3502-3517.
    [29]MAY P T,RAJOPADHYAYA D K.Wind profiler observations of vertical motion and precipitation microphysics of a tropical squall line[J].Mon Wea Rev,1991,124(4):621-633.
    [30]FIERRO A O,LESLIE L M,MANSELL E R,et al.Numerical simulations of the electrification and microphysics of the weakly electrified 9th February 1993TOGA COARE squall line,2008:Comparisons with observations[J].Mon Wea Rev,2008,136(1):364-379.
    [31]FIERRO A O,SIMPSON J,LeMONE M A,et al.On how hot towers fuel the Hadley cell:An observational and modeling study of line-organized convection in the equatorial trough from TOGACOARE[J].J Atmos Sci,2009,66(9):2730-2746.
    [32]WANG Y.How do outer spiral rainbands affect tropical cyclone structure and intensity[J].J Atmos Sci,2009,66:1250-1273.
    [33]PENG M S,JENG B F,WILLIAMS R T.A numerical study on tropical cyclone Intensification,Part I:Beta effect and mean flow effect[J].J Atmos Sci,1991,56(10):1404-1423.
    [34]WU L,BRAUN S A.Effects of environmentally induced asymmetries on hurricane intensity:A numerical study[J].J Atmos Sci,2004,61(24):3065-3081.
    [35]YANG B,WANG Y,WANG B.The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity[J].J Atmos Sci,2007,64(4):1165-1188.
    [36]ZHANG Zhen-yu,WEI Shao-yuan.The introduction of the mesoscale numerical model[J].J Meteor Sci,1983,3(2):115-116(in Chinese).
    [37]CHEN De-hui,XUE Ji-shan.An overview on recent progresses of the operational numerical weather prediction models[J].Acta Meteor Sinica,2004,62(5):623-633(in Chinese).
    [38]LIAO Dong-xian.On the design of the atmospheric model[J].Acta Meteor Sinica,1999,57(5):513-524(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700