机器人关节摩擦建模与补偿研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on friction modeling and compensation of robot manipulator
  • 作者:吴晓敏 ; 刘暾东 ; 贺苗 ; 高凤强 ; 邵桂芳
  • 英文作者:Wu Xiaomin;Liu Tundong;He Miao;Gao Fengqiang;Shao Guifang;School of Aerospace Engineering,Xiamen University;Xiamen University Tan KahKee College and VIBOT Industrial Robot Innovation Laboratory;Xiamen Key Laboratory of Big Data Intelligent Analysis and Decision-marking;
  • 关键词:工业机器人 ; Stribeck摩擦模型 ; 关节温度 ; 摩擦补偿
  • 英文关键词:industrial robot;;Stribeck model;;joint temperature;;friction compensation
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:厦门大学航空航天学院;厦门大学嘉庚学院-微柏工业机器人创新实验室;厦门市大数据智能分析与决策重点实验室;
  • 出版日期:2018-10-15
  • 出版单位:仪器仪表学报
  • 年:2018
  • 期:v.39
  • 基金:厦门市科技项目(3502Z20183004);; 福建省产学合作项目(2018H6018);; 厦门大学校长基金项目(20720160085)资助
  • 语种:中文;
  • 页:YQXB201810006
  • 页数:7
  • CN:10
  • ISSN:11-2179/TH
  • 分类号:47-53
摘要
为了降低温度变化导致机器人关节摩擦补偿失效、跟踪精度降低的问题,提出一种考虑温度变化的Stribeck摩擦改进模型。通过非线性最小二乘法建立系统参数辨识模型,利用L-M (Levenberg-Marquardt)法对该模型进行迭代求解,建立温度影响下的非线性Stribeck摩擦模型。为验证模型的有效性,引入基于摩擦模型的前馈补偿方法,设计了机器人关节的轨迹跟踪实验。实验结果表明,改进的Stribeck摩擦模型能够准确地描述不同温度下摩擦的变化规律;与基于常规Stribeck摩擦模型补偿相比较,该模型的应用能进一步提高六轴机器人关节跟踪精度。
        The temperature change may result in the failure of the joint friction compensation and the reduction of tracking precision of the six-axis industrial robot. To solve this problem, a temperature dependence Stribeck friction model is proposed in this paper.The system parameter identification model is achievedby the nonlinear least square method. The Levenberg-Marquardt(L-M) method is utilizedto solve the model iteratively.The nonlinear Stribeck friction model under the influence of temperature is obtained. To verify the effectiveness of the model, the trajectory tracking experiment of six-axis industrial robot is designed, and the friction feedforward compensation is introduced. Experimental results show that the improved Stribeck friction model can accurately describe the change law of friction at different temperatures. The friction feedforward compensation based on the model can effectively improve the tracking accuracy of six axis robot joints.
引文
[1] KERMANI M R, WONG M, PATEL R V, et al. Friction compensation in low and high-reversal-velocity manipulators[C]. IEEE International Conference on Robotics and Automation, 2004:4320-4325.
    [2] TOMEI P. Robust adaptive friction compensation for tracking control of robot manipulators[J]. IEEE Transactions on Automatic Control, 2002,45(11):2164-2169.
    [3] IWATANI M, KIKUUWE R. An identification procedure for rate-dependency of friction in robotic joints with limited motion ranges[J]. Mechatronics, 2016, 36(1):36-44.
    [4] QIN J, LEONARD F, ABBA G. Real-time trajectory compensation in robotic friction stir welding using state estimators[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6):2207-2214.
    [5] ROVEDA L, PALLUCCA G, PEDROCCHI N, et al. Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks[J]. IEEE Transactions on Industrial Informatics, 2018,14(4):1753-1763.
    [6] SIMONI L, VILLAGROSSI E, BESCHI M, et al. On the use of a temperature based friction model for a virtual force sensor in industrial robot manipulators[C].IEEE International Conference on Emerging Technologies and Factory Automation,2017:1-6
    [7] BONA B, INDRI M. Friction compensation in robotics: An overview[C]. 44th IEEE Conference on Decision and Control, 2005:4360-4367.
    [8] HENSEN R H A, MOLENGRAFT J G V D M, STEINBUCH M. Frequency domain identification of dynamic friction model parameters[J]. IEEE Transactions on Control Systems Technology, 2002,10(2):191-196.
    [9] FERRETTI G, MAGNANI G, MARTUCCI G, et al. Friction model validation in sliding and presliding regimes with high resolution encoders[C]. Experimental Robotics VIII. Berlin & Heidelberg:Springer, 2003:328-337.
    [10] LI C B, PAVELESCU D. The friction-speed relation and its influence on the critical velocity of stick-slip motion[J]. Wear, 1982,82(3):277-289.
    [11] 刘栋,陶涛,梅雪松,等.伺服系统线性特性和非线性摩擦的解耦辨识方法研究[J].仪器仪表学报,2010, 31(4):782-788.LIU D, TAO T, MEI X S, et al. Study on the decoupling identification method of linear dynamic and nonlinear friction for servo drive system[J]. Chinese Journal of Scientific Instrument, 2010,31(4):782-788.
    [12] 姜振海,徐思晨,谷东伟,等.基于区间分析理论的摩擦补偿研究[J].光学 精密工程,2017,25(6):1519-1525.JIANG ZH H,XU S CH,GU D W,et al.Research on friction compensation based on interval analysis theory[J]. Optics and Precision Engineering, 2017, 25(6): 1519-1525.
    [13] SIMONI L, BESCHI M, LEGNANI G, et al. Friction modeling with temperature effects for industrial robot manipulators[C]. IEEE International Conference on Intelligent Robots and Systems, 2015:3524-3529.
    [14] MORE J J. The Levenberg-Marquardt algorithm: Implementation and theory[J]. Lecture Notes in Mathematics, 1977(630):105-116.
    [15] MARTON L, LANTOS B. Modeling, identification, and compensation of stick-slip friction[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1):511-521.
    [16] 刘瑞娟,聂卓赟,邵辉,等.基于扩张状态观测器的迟滞非线性系统辨识[J].仪器仪表学报,2017,38(8):1970-1977.LIU R J,NIE ZH Y,SHAO H, et al.Identification for hysteresis nonlinear system based on extended state observer[J].Chinese Journal of Scientific Instrument,2017,38(8):1970-1977.
    [17] 杨晓京,李庭树,刘浩.压电超精密定位台的动态迟滞建模研究[J].仪器仪表学报,2017,38(10):2492-2499.YANG X J, LI T SH, LIU H.Dynamic hysteresis modeling of piezoelectric ultra precision positioning stage[J].Chinese Journal of Scientific Instrument,2017,38(10):2492-2499.
    [18] GAROFALO G, OTT C. Limit cycle control using energy function regulation with friction compensation[J]. IEEE Robotics & Automation Letters, 2017, 1(1):90-97.
    [19] 付胜华,韩秋实,王红军.高速大行程滚珠丝杠副智能测控平台的伺服控制[J].电子测量与仪器学报,2017,31(11):1821-1827.FU SH H, HAN Q SH, WANG H J.Servo control of intelligent measurement and control platformfor ball screw with high speed and large range[J]. Journal of Electronic Measurement and Instrumentation,2017,31(11):1821-1827.
    [20] 葛媛媛,张宏基.基于自适应模糊滑模控制的机器人轨迹跟踪算法[J].电子测量与仪器学报,2017,31(5):746-755.GE Y Y, ZHANG H J.Trajectory tracking algorithm for robot based on adaptivefuzzy sliding mode control[J]. Journal of Electronic Measurement and Instrumentation,2017,31(5):746-755.
    [21] YOON J Y, TRUMPER D L. Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance[J]. Mechatronics, 2014, 24(6):734-741.
    [22] GUO S, XU C, XIAO N, et al. Cable-driven interventional operation robot with Stribeck friction feedforward compensation[C].IEEE International Conference on Mechatronics and Automation, 2017:1787-1791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700