阴极电弧离子镀TiAlSiN涂层刀具切削性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cutting Performance of TiAlSiN Coating by Cathode Arc Ion Plating
  • 作者:张而耕 ; 何澄 ; 陈强
  • 英文作者:ZHANG Ergeng;HE Cheng;CHEN Qiang;Shanghai Institute of Technology;
  • 关键词:TiAlSiN涂层 ; 数值模拟 ; 切削力 ; 切削热
  • 英文关键词:TiAlSiN coating;;numerical simulation;;cutting force;;cutting heat
  • 中文刊名:TCXB
  • 英文刊名:Journal of Ceramics
  • 机构:上海应用技术大学;
  • 出版日期:2018-09-13 16:42
  • 出版单位:陶瓷学报
  • 年:2018
  • 期:v.39
  • 基金:上海市科委重点支撑计划项目(17090503800)
  • 语种:中文;
  • 页:TCXB201804006
  • 页数:9
  • CN:04
  • ISSN:36-1205/TS
  • 分类号:33-41
摘要
本文在M2高速钢试片上制备了纳微米TiAlSiN复合涂层,并对其性能进行了表征。建立3D正交切削实验模型,模拟不同厚度TiAlSiN涂层对刀具切削力、切削热的影响,并与现场切削力实验结果进行对比。结果表明Si元素能抑制TiAlN柱状晶的生长,涂层刀具表现出良好的切削性能。模拟实验结果表明刀具的切削力和切削温度均随涂层厚度的增加呈先减小后增加趋势,涂层厚度为4μm的刀具具有最小的切削力,涂层厚度为3μm的刀具具有最小的切削热。现场切削实验证明切削力值变化趋势与模拟结果一致,误差在13%以内,可以较好的反应刀具切削过程中切削力的变化。
        Nanometer TiAlSiN composite coatings were prepared on M2 high speed steel test pieces and their properties were characterized. The 3D orthogonal cutting experiment model was established to simulate the effect of TiAlSiN coating of different thickness on cutting force and cutting heat, and the simulation results of cutting force were verified by field cutting experiment. The results show that the Si suppresses the growth of the Ti Al N columnar crystal, and the coated tools show good performance. The simulation results show that the cutting force and the cutting temperature of the tool decrease at first and then increase with the increase of the coating thickness. The 4μm coating tool has the minimum cutting force, and the 3μm coating tool has the smallest cutting heat. The results of the cutting experiment show that the cutting force is consistent with the simulation trend and the error is less than 13%, which can reflect the change of the cutting heat and cutting force in the cutting process.
引文
[1]曹华伟,张程煜,乔生儒,等.物理气相沉积Ti Al N涂层的研究进展[J].材料导报,2011,25(11):25-29.CAO H W,ZHANG C Y,QIAO S R,et al.Materials Review,2011,25(11):25-29.
    [2]袁琳,高原,张维,等.多弧离子镀制备Ti N涂层的高温抗氧化性能研究[J].硬质合金,2012,29(1):15-18.YUAN L,GAO Y,ZHANG W,et al.Cemented Carbide,2012,29(1):15-18.
    [3]彭笑,朱丽慧,Vineet,等.PVD制备Ti Al Si N涂层的研究进展[J].材料导报,2014,28(3):42-44.PENG X,ZHU L H,KUMAR V,et al.Materials Review,2014,28(3):42-44.
    [4]张而耕,王琴雪,周琼,等.阴极电弧离子镀Ti Al Si N涂层的高温抗氧化性能研究[J].陶瓷学报,2016,37(5):509-515.ZHANG E G,WANG Q X,ZHOU Q,et al.Journal of Ceramics,2016,37(5):509-515.
    [5]CHEN T,XIE Z,FENG G,et al.Correlation between microstructure evolution and high temperature properties of Ti Al Si N hard coatings with different Si and Al content[J].Applied Surface Science,2014,314(10):735-745.
    [6]WANG S Q,CHEN L,YANG B,et al.Effect of Si addition on microstructure and mechanical properties of Ti–Al–N coating[J].International Journal of Refractory Metals&Hard Materials,2010,28(5):593-596.
    [7]DERFLINGER V H,SCHüTZE A,ANTE M.Mechanical and structural properties of various alloyed Ti Al N-based hard coatings[J].Surface&Coatings Technology,2006,200(16-17):4693-4700.
    [8]YU D,WANG C,CHENG X,et al.Microstructure and properties of Ti Al Si N coatings prepared by hybrid PVD technology[J].Thin Solid Films,2009,517(17):4950-4955.
    [9]CHANG Y Y,LAI H M.Wear behavior and cutting performance of Cr Al Si N and Ti Al Si N hard coatings on cemented carbide cutting tools for Ti alloys[J].Surface&Coatings Technology,2014,259:152-158.
    [10]BINDER M,KLOCKE F,LUNG D.Tool wear simulation of complex shaped coated cutting tools[J].Wear,2015,330-331:600-607.
    [11]PITTALàG M,MONNO M.3D finite element modeling of face milling of continuous chip material[J].International Journal of Advanced Manufacturing Technology,2010,47(5-8):543-555.
    [12]JAWAHIR I S,BRINKSMEIER E,M'SAOUBI R,et al.Surface integrity in material removal processes:Recent advances[J].CIRP Annals-Manufacturing Technology,2011,60(2):603-626.
    [13]ATTANASIO A,CERETTI E,RIZZUTI S,et al.3D finite element analysis of tool wear in machining[J].CIRP AnnalsManufacturing Technology,2008,57(1):61-64.
    [14]ZHANG E,ZHANG T.Study on preparation and properties of Al Ti N nanostructured multilayer coatings[J].Optoelectronics and Advanced Materials-Rapid Communications,2015,9(7):1051-1057.
    [15]DU H,ZHAO H,XIONG J,et al.Effect of interlayers on the structure and properties of Ti Al N based coatings on WCCo cemented carbide substrate[J].International Journal of Refractory Metals&Hard Materials,2013,37(1):60-66.
    [16]BARSHILIA H C,GHOSH M,SHASHIDHARA A,et al.Deposition and characterization of Ti Al Si N nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering[J].Applied Surface Science,2010,256(21):6420-6426.
    [17]时婧,裴志亮,宫骏,等.Si含量对电弧离子镀Ti-Al-Si-N薄膜组织结构和力学性能的影响[J].金属学报,2012(11):1349-1356.SHI J,PEI Z L,GONG J,et al.Acta Metallurgica Sinica,2012,(11):1349-1356.
    [18]李宏烨,庄新村,赵震.材料常用流动应力模型研究[J].模具技术,2009,5:1-4.LI H Y,ZHUANG X C,ZHAO Z.Die and Mould Technology,2009,5:1-4.
    [19]MANDAL S,RAKESH V,SIVAPRASAD P V,et al.Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J].Materials Science&Engineering A,2009,500(1-2):114-121.
    [20]刘东,陈五一.钛合金TC4切削过程流动应力模型研究[J].塑性工程学报,2008,15(1):167-171.LIU D,CHEN W Y.Journal of Plasticity Engineering,2008,15(1):167-171.
    [21]PITTALA G M,MONNO M.3D finite element modeling of face milling of continuous chip material[J].International Journal of Advanced Manufacturing Technology,2010,47(5-8):543-555.
    [22]YAN S,ZHU D,ZHUANG K,et al.Modeling and analysis of coated tool temperature variation in dry milling of Inconel718 turbine blade considering flank wear effect[J].Journal of Materials Processing Technology,2014,214(12):2985-3001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700