炭纤维微观结构表征:X射线衍射
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of the microstructures of carbon fibers by X-ray diffraction
  • 作者:李登华 ; 吕春祥 ; 郝俊杰 ; 杨禹 ; 吕晓轩 ; 杜素军 ; 刘哲
  • 英文作者:LI Deng-hua;LU Chun-xiang;HAO Jun-jie;YANG Yu;LU Xiao-xuan;DU Su-jun;LIU Zhe;National and Local Joint Engineering Laboratory of Advanced Road Materials,Shanxi Transportation Research Institute;National Engineering Laboratory for Carbon Fiber Technology,Institute of Coal Chemistry,Chinese Academy of Sciences;Shanxi Gangke Carbon Materials Co.,Ltd;
  • 关键词:炭纤维 ; 晶态结构 ; X射线衍射 ; 微观应力 ; 炭积层分布
  • 英文关键词:Carbon fiber;;Crystalline structure;;X-ray diffraction;;Microstress;;Stacking number distribution
  • 中文刊名:XTCL
  • 英文刊名:New Carbon Materials
  • 机构:山西省交通科学研究院新型道路材料国家地方联合工程实验室;中国科学院山西煤炭化学研究所碳纤维制备技术国家工程实验室;山西钢科碳材料有限公司;
  • 出版日期:2019-02-15
  • 出版单位:新型炭材料
  • 年:2019
  • 期:v.34
  • 基金:山西省科技重大专项(20181101019);; 山西省重点研发计划项目(201703D121015)~~
  • 语种:中文;
  • 页:XTCL201901002
  • 页数:8
  • CN:01
  • ISSN:14-1116/TQ
  • 分类号:13-20
摘要
X射线衍射(XRD)作为研究材料内部晶态结构的重要方法,在炭材料表征技术领域有着广泛的应用。对炭纤维而言,观察相应衍射峰可以对晶态结构及其变化过程做定性的比较研究,也可以通过数据解析获得炭纤维的各类晶态结构参数,从而实现对内部织构及其变化过程的量化分析。近几年随着设备性能和应用技术的不断进步,XRD的一些新理论、新方法、新应用陆续出现,拓展了该技术在炭材料内部微应力、晶态织构、择优取向特征等方面的应用。有鉴于此,本文综述了近年来炭纤维微观结构表征技术在理论、技术及应用等方面的进展情况。着重阐述了XRD在炭纤维内部微观应力/应变、晶态结构、结构取向性、石墨化程度等方面的创新应用及数据分析技术。
        Progress on the study of the structural features of carbon fibers using X-ray diffraction is reviewed,including the crystalline structural parameters of carbon fibers,orientation of crystallites along the fiber axis,degree of graphitization and micro-stress/microstrain,as well as their evolution during the manufacture of carbon fibers.
引文
[1]Ruland W.Small-angle scattering of two-phase systems:Determination and significance of systematic deviations from Porod's Law[J].J Appl Cryst,1971,4(1):70-73.
    [2]程宇鹏.碳纤维加固对钢筋混凝土梁结构效应影响分析[J].山西交通科技,2017,4):86-88.(Cheng Y P.The influence analysis of carbon fiber reinforcement on the structure effect of reinforced concrete beam[J].Shanxi Science&Technology of Communications,2017(4):86-88.)
    [3]曹世军.碳纤维加固公路桥梁抗弯截面的设计[J].山西交通科技,2006,(5):46-47.(Cao S J.The design on bending section of carbon fiber strengthening highway bridge[J].Shanxi Science&Technology of Communications,2006(5):46-47.)
    [4]李登华.高强高模碳纤维制备过程中微观结构的演变规律[D].中国科学院大学博士学位论文,2014.(Li D H.Structural evolution during the preparation of high performance carbon fibers[D].University of Chinese Academy of Sciences,2014.)
    [5]李登华,吴刚平,吕春祥,等.聚丙烯腈基炭纤维中微孔的演变规律[J].新型炭材料,2010,25(1):41-47.(Li D H,Wu G P,Lu C X,et al.Evolution of microvoids in PAN-based carbon fibers[J].New Carbon Materials,2010,25(1):41-47.)
    [6]Ruland W.Carbon fibers[J].Adv Mater,1990,2(11):528-536.
    [7]Sugimoto Y,Kato T,Shioya M,et al.Structure change of carbon fibers during axial compression[J].Carbon,2013,57(0):416-424.
    [8]Fujimoto H.A new estimation method for the degree of graphitization for random layer lattices[J].Carbon,2010,48(12):3446-3453.
    [9]Ruland W.X-ray determination of crystallinity and diffuse disorder scattering[J].Acta Cryst,1961,14:1180-1185.
    [10]Ruland W.X-ray diffraction studies on carbon and graphite[J].Chemistry and physics of carbon,1968,4:1-84.
    [11]Wang H,Guo Q,Yang J,et al.Microstructural evolution and oxidation resistance of polyacrylonitrile-based carbon fibers doped with boron by the decomposition of B4C[J].Carbon,2013,56(0):296-308.
    [12]Li D F,Wang H J,Wang X K.Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization[J].J Mater Sci,2007,42(12):4642-4649.
    [13]Zhou G H,Liu Y Q,He L L,et al.Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites[J].Carbon,2011,49(9):2883-2892.
    [14]Qin X Y,Lu Y G,Xiao H,et al.A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers[J].Carbon,2012,50(12):4459-4469.
    [15]Rennhofer H,Loidl D,Puchegger S,et al.Structural development of PAN-based carbon fibers studied by in situ X-ray scattering at high temperatures under load[J].Carbon,2010,48(4):964-971.
    [16]Wu G,Li D,Yang Y,et al.Carbon layer structures and thermal conductivity of graphitized carbon fibers[J].J Mater Sci,2012,47(6):2882-2890.
    [17]Qiu L,Zheng X H,Zhu J,et al.The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrilebased carbon fiber[J].Carbon,2013,51(0):265-273.
    [18]Northolt M G,Veldhuizen L H,Jansen H.Tensile deformation of carbon fibers and the relationship with the modulus for shear between the basal planes[J].Carbon,1991,29(8):1267-1279.
    [19]Loidl D,Peterlik H,Müller M,et al.Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction[J].Carbon,2003,41(3):563-570.
    [20]Franklin R E.Crystallite growth in graphitizing and non-graphitizing carbons[J].Proc R Soc A,1951,209(1097):196-218.
    [21]Warner J H,Margine E R,Mukai M,et al.Dislocation-driven deformations in graphene[J].Science,2012,337(6091):209-212.
    [22]Balima F,Pischedda V,Lefloch S,et al.An in situ small angle neutron scattering study of expanded graphite under a uniaxial stress[J].Carbon,2013,57(0):460-469.
    [23]Shioya M,Hayakawa E,Takaku A.Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres[J].J Mater Sci,1996,31(17):4521-4532.
    [24]Kobayashi T,Sumiya K,Fujii Y,et al.Stress-induced microstructural changes and crystallite modulus of carbon fiber as measured by X-ray scattering[J].Carbon,2012,50(3):1163-1169.
    [25]Li D H,Lu C X,Wu G P,et al.Heat-induced internal strain relaxation and its effect on the microstructure of polyacrylonitrile-based carbon fiber[J].J M ater Sci Technol,2014,30(10):1051-1058.
    [26]Sarian S,Strong S L.Mechanical properties of stress-graphitised carbon fibers:Thermally induced relaxation and recovery[J].Fiber Sci Technol 1971,4(1):67-79.
    [27]Kobayashi T,Sumiya K,Fukuba Y,et al.Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and microRaman spectral measurements[J].Carbon,2011,49(5):1646-1652.
    [28]Huang Y,Young R J.Effect of fibre microstructure upon the modulus of PAN-and pitch-based carbon fibres[J].Carbon,1995,33(2):97-107.
    [29]Azároff L V.Elements of X-ray crystallography[J].New York:Mc Graw-Hill,1968:279-281.
    [30]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.(He F.Carbon Fibre and Gaphite fibre[M].Beijing:Chemical industry press,2010.)
    [31]郭金玲,沈岳年.用Scherrer公式计算晶粒度应注意的几个问题[J].内蒙古师范大学学报:自然科学汉文版,2009,38(3):357-358.(Guo J L,Shen Y N.Some questions on the calculation of the grain size with Scherrer formula[J].Journal of Inner Mongolia Normal University(Natural Science Edition),2009,38(3):357-358.)
    [32]Zhou Z,Bouwman W G,Schut H,et al.Interpretation of X-ray diffraction patterns of(nuclear)graphite[J].Carbon,2014,69(0):17-24.
    [33]马礼敦.X射线粉末衍射的新起点-Rietveld全谱拟合[J].物理学进展,1996,2:251-271.(Ma L D.New starting of X-ray powder diffraction-Rietveld w hole pattern fitting[J].Progress in physics,1996,2:251-271.)
    [34]Rietveld H.A profile refinement method for nuclear and magnetic structures[J].Journal of Applied Crystallography,1969,2(2):65-71.
    [35]Mccusker L B,Von Dreele R B,Cox D E,et al.Rietveld refinement guidelines[J].Journal of Applied Crystallography,1999,32(1):36-50.
    [36]Rietveld H.Line profiles of neutron powder-diffraction peaks for structure refinement[J].Acta Crystallographica,1967,22(1):151-152.
    [37]张彩红,盛毅,田红,等.全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变[J].物理学报,2011,60(3):405-413.(Zhang C H,Sheng Y,Tian H,et al.The evolution of crystalline structure in the preparation of PAN-based carbon fibers studied by whole powder pattern fitting[J].Acta Phys Sin,2011,60(3):405-413.)
    [38]Diamond R.A least-squares analysis of the diffuse X-ray scattering from carbons[J].Acta Crystallographica,1958,11(3):129-138.
    [39]Fujimoto H,Shiraishi M.Characterization of unordered carbon using Warren-Bodenstein’s equation[J].Carbon,2001,39(11):1753-1761.
    [40]Warren B E.X-ray diffraction in random layer lattices[J].Phys Rev,1941,59(9):693-698.
    [41]Iwashita N,Chong R P,Fujimoto H,et al.Specification for a standard procedure of X-ray diffraction measurements on carbon materials[J].Carbon,2004,42(10):701-714.
    [42]Iwashita N.Comments on the revised“GAKUSHIN”method[J].TANSO,2006(221):48-51.
    [43]Li D,Lu C,Wang L,et al.A reconsideration of the relationship between structural features and mechanical properties of carbon fibers[J].Materials Science and Engineering:A,2017,685(2017):65-70.
    [44]Li D,Lu C,Du S,et al.Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering[J].Applied Physics A,2016,122(11):956.
    [45]Price R J,Bokros J C.Relationship between preferred orientation,thermal expansion,and radiation-induced length changes in graphite[J].J Appl Phys,1965,36(6):1897-1906.
    [46]Fischer L,Ruland W.The influence of graphitization on the mechanical properties of carbon fibers[J].Colloid Polym Sci,1980,258(8):917-922.
    [47]Ruland W.X-ray studies on preferred orientation in carbon fibers[J].Journal of Applied Physics,1967,38(9):3585-3589.
    [48]Ruland W,Tompa H.Preferred orientation in cylindrically symmetrical systems:Transformations of orientation distributions[J].Kolloid-ZuZPolymere,1972,250(5):471-473.
    [49]Ruland W.The relationship between preferred orientation and Young's modulus of carbon fibers;proceedings of the Appl Polym Symp,F,1969[C].American Chemical Society.
    [50]Maire J,Mering J.Croissance des dimensions des domaines cristallins au cours de la graphitation du carbone-carbon[J].Carbon,1960:345-350.
    [51]王茂章,贺福.碳纤维的制造,性质及其应用[M].科学出版社,1984.(Wang M Z,He F.The Fabrication,Properties and Applications of Carbon Fibers[M].Science Press,1984.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700