Provide a suitable range to include the thermal creeping effect on slip velocity and temperature jump of an air flow in a nanochannel by lattice Boltzmann method
详细信息    查看全文
文摘
The thermal creeping effect on slip velocity of air forced convection through a nanochannel is studied for the first time by using a lattice Boltzmann method. The nanochannel side walls are kept hot while the cold inlet air streams along them. The computations are presented for the wide range of Reynolds number, Knudsen number and Eckert number while slip velocity and temperature jump effects are involved. Moreover appropriate validations are performed versus previous works concerned the micro–nanoflows.The achieved results are shown as the velocity and temperature profiles at different cross sections, streamlines and isotherms and also the values of slip velocity and temperature jump along the nanochannel walls. The ability of the lattice Boltzmann method to simulate the thermal creeping effects on hydrodynamic and thermal domains of flow is shown at this study; so that its effects should be involved at lower values of Eckert number and higher values of Reynolds number especially at entrance region where the most temperature gradient exists.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.