Geometric evolution of the Reynolds stress tensor
详细信息    查看全文
文摘
The dynamics of the Reynolds stress tensor for turbulent flows is described with an evolution equation coupling both geometric effects and turbulent source terms. The effects of the mean flow geometry are shown up when the source terms are neglected: the Reynolds stress tensor is then expressed as the sum of three tensor products of vector fields which are governed by a distorted gyroscopic equation. Along the mean flow trajectories, the fluctuations of velocity are described by differential equations whose coefficients depend only on the mean flow deformation. If the mean flow vorticity is small enough, an approximate turbulence model is derived, and its application to shear shallow water flows is proposed. Moreover, the approximate turbulence model admits a variational formulation which is similar to the one of capillary fluids.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.