An equivalent continuum multiscale formulation for 2D geometrical nonlinear analysis of lattice truss structure
详细信息    查看全文
文摘
In this work, an equivalent continuum multiscale formulation is presented for the geometrical nonlinear analysis of the structures with lattice truss materials. This formulation is established by combining the extended multiscale finite element method and the co-rotational approach. Firstly, the lattice truss unit cell is equivalent to a continuum coarse element by using a numerical constructed interpolation function in the local coordinate system. Then the tangent stiffness matrix of this coarse element is derived by employing the basic idea of the co-rotational approach in the global coordinate system. Thus, the global nonlinear equilibrium equations of the structure at the macroscopic level can be solved by using the general displacement control algorithm to capture the equilibrium path with multiple critical points. After performing all of the incremental steps and the iterative steps on the macroscopic scale, the microscopic information, such as the displacement, stress and strain, can be obtained easily by virtue of the afore-constructed numerical interpolation functions once again. In addition, several numerical examples are carried out to study the effects of the layout and size of unit cell, investigate the sensitivity of coarse-scale meshes and verify the validation and efficiency of the presented multiscale formulation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.