(Total) Vector domination for graphs with bounded branchwidth
文摘
Given a graph ac6e4" title="Click to view the MathML source">G=(V,E) of order n and an n-dimensional non-negative vector d=(d(1),d(2),…,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S⊆V such that every vertex v in V∖S (resp., in ac41098a455" title="Click to view the MathML source">V) has at least d(v) neighbors in S. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the k-tuple dominating set problem (this k is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respect to k, where k is the size of solution.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.