Monitoring of dopamine and its metabolites in brain microdialysates: Method combining freeze-drying with liquid chromatography–tandem mass spectrometry
详细信息    查看全文
文摘
A sensitive assay method was developed for a parallel, rapid and precise determination of dopamine and its metabolites, homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid, from brain microdialysates. The method consisted of a pre-treatment step, freeze-drying (lyophilization), to concentrate dopamine and its metabolites from the microdialysates, and a detection step using liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS). In particular, the reaction monitoring mode was selected for its extremely high degree of selectivity and the stable-isotope-dilution assay for its high precision of quantification. The developed method was characterized by the following parameters: the precision of the developed method was determined as ≥88.6 % for dopamine, ≥89.9 % for homovanillic acid, ≥86.1 % for 3-methoxytyramine and ≥88.1 % for 3,4-dihydroxyphenylacetic acid; the mean accuracy was determined as ≥88.2 % for dopamine, ≥88.3 % for homovanillic acid, ≥85.9 % for 3-methoxytyramine and ≥88.6 % for 3,4-dihydroxyphenylacetic acid. The developed method was compared to (1) other combinations of pre-treatment methods (solid phase extraction and nitrogen stripping) with LC–MS and (2) another detection method, liquid chromatography, with electrochemical detection. The novel developed method using combination of lyophilization with LC–ESI-MS/MS was tested on real samples obtained from the nucleus accumbens of rat pups after an acute methamphetamine administration. It was proven that the developed assay could be applied to both a simultaneous analysis of all four substrates (dopamine, homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) in microdialysis samples acquired from the rat brain and the monitoring of their slight concentration changes on a picogram level over time following methamphetamine stimulus.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.