Facile synthesis of yeast cross-linked Fe3O4 nanoadsorbents for efficient removal of aquatic environment contaminated with As(V)
详细信息    查看全文
文摘
A facile solvothermal method was adopted to prepare monodispersed surface functionalized Fe3O4 nanoparticles via self assembly process. The pure yeast, diethylamine functionalized Fe3O4 nanoparticles (DMNPs) and yeast cross-linked Fe3O4 nanoparticles (YcMNPs) were used for the efficient removal of arsenate from aqueous solution. The crystal structure, morphology and magnetic properties of these nanoparticles were characterized by using X-ray diffraction, field emission scanning electron microscopy and vibrating sample magnetometer. The observed physico-chemical properties confirms the metal binding nature of prepared samples. The adsorption of As(V) on the functionalized magnetite nanoparticles was tested under different operating conditions like contact time, adsorbate dosage, adsorbate concentration and pH. The faster removal of As(V) was obtained using YcMNPs (99%) than DMNPs and pure yeast. The adsorption equilibrium data obeys Langmuir isotherm than Freundlich model and the kinetics data well depicts the pseudo-second-order model. The batch column experiment confirms the adequate desorption as well as reusability without significant loss of efficiency. The results reveal the technical feasibility of the prepared nanoparticles for their easy synthesis, recovery, cost effective, eco-friendly and a promising advanced adsorbent for environmental pollution.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.