MRI rotating frame relaxation measurements for articular cartilage assessment
详细信息    查看全文
文摘
In the present work we introduced two MRI rotating frame relaxation methods, namely adiabatic T1¦Ñ and Relaxation Along a Fictitious Field (RAFF), along with an inversion-prepared Magnetization Transfer (MT) protocol for assessment of articular cartilage. Given the inherent sensitivity of rotating frame relaxation methods to slow molecular motions that are relevant in cartilage, we hypothesized that adiabatic T1¦Ñ and RAFF would have higher sensitivity to articular cartilage degradation as compared to laboratory frame T2 and MT. To test this hypothesis, a proteoglycan depletion model was used. Relaxation time measurements were performed at 0 and 48 h in 10 bovine patellar specimens, 5 of which were treated with trypsin and 5 untreated controls were stored under identical conditions in isotonic saline for 48 h. Relaxation times measured at 48 h were longer than those measured at 0 h in both groups. The changes in T2 and MT relaxation times after 48 h were approximately 3 times larger in the trypsin treated specimens as compared to the untreated group, whereas increases of adiabatic T1¦Ñ and RAFF were 4 to 5 fold larger. Overall, these findings demonstrate a higher sensitivity of adiabatic T1¦Ñ and RAFF to the trypsin-induced changes in bovine patellar cartilage as compared to the commonly used T2 and MT. Since adiabatic T1¦Ñ and RAFF are advantageous for human applications as compared to standard continuous-wave T1¦Ñ methods, adiabatic T1¦Ñ and RAFF are promising tools for assessing cartilage degradation in clinical settings.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.