A fast nonlinear variable structure equivalent magnetic circuit modeling for dual-channel switched reluctance machine
详细信息    查看全文
文摘
Switched reluctance machines (SRMs) are normally designed and applied as 6/4 or 8/6 single-channel SRMs, recent efforts with 12/8 dual-channel SRM (DCSRM) have spurred interest. The DCSRM is driven by two independent sets of power electronic circuits with dual control channels and a fault tolerated operation mode can be used in this system for high reliability. In this paper, a fast nonlinear variable structure equivalent magnetic circuit (VSEMC) modeling method is developed for DCSRM. This method is used to calculate the static self and mutual flux linkage of phase winding for DCSRM by the formulas of airgap permeances, the stator and rotor pole and yoke permeances, in which the mutual effects as well as the magnetic saturation are taken into account. Then, a series of experimental tests are performed to obtain the static magnetic characteristics of a 12/8 DCSRM including self and mutual flux linkages under different rotor positions for varying exciting current conditions. The effectiveness of this proposed VSEMC method is verified by comparing with the FEM analysis and experimental results. Finally, details of simulation model for DCSRM under single channel operation mode and dual channel operation mode and comparison with experimental waveforms along with their implications for performances prediction are presented.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.