Kinetic Monte Carlo simulation of phase-precipitation versus instability behavior in short period FeCr superlattices
详细信息    查看全文
文摘
The structural evolution of FeCr superlattices has been studied using a quasi-atomistic Object Kinetic Monte Carlo model. Superlattices with different spatial periods have been simulated for anneal durations from few hours to several months at 500 °C. Relatively-long period superlattices stabilize into Fe-rich and Cr-rich layers with compositions close to those of bulk α and α′ phases. In contrast, superlattices with very short periods (4, 5, 6 nm) are observed to undergo instability and, for long annealing times, evolve into three-dimensionally decomposed regions, in qualitative agreement to recent experimental observations. The instability onset is delayed as the spatial period increases, and it occurs via interface roughness. This evolution can be explained as a minimization of the free-energy associated to the α/α′ interfaces. A comprehensive description of the evolution dynamics of FeCr-based structures is obtained with our model.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.