Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces
详细信息    查看全文
文摘
Photocatalytic-activation of anodized TiO2-surfaces has been demonstrated to yield antibacterial and tissue integrating effects, but effects on simultaneous growth of tissue cells and bacteria in co-culture have never been studied. Moreover, it is unknown how human-bone-marrow-mesenchymal-stem (hBMMS) cells, laying the groundwork for integration of titanium implants in bone, respond to photocatalytic activation of anodized TiO2-surfaces. Photocatalytically-activated, anodized titanium and titanium-alloy surfaces achieved 99.99% killing of adhering Staphylococcus epidermidis and Staphylococcus aureus, an effect that lasted for 30 days of storage in air. Surface coverage by osteoblasts was not affected by photocatalytic activation of anodized TiO2-surfaces. Co-cultures of osteoblasts with contaminating S.聽epidermidis however, enhanced surface coverage on photocatalytically-activated, anodized titanium-alloy surfaces. hBMMS cells grew less on photocatalytically-activated, anodized titanium surfaces, while not at all on photocatalytically-activated, anodized titanium-alloy surfaces and did not survive the presence of contaminating staphylococci. This reduced surface coverage by hBMMS cells disappeared when photocatalytically-activated, anodized titanium-alloy surfaces were exposed to buffer for 60聽min, both in absence or presence of contaminating S.聽aureus. Consequently, it is concluded that photocatalytically-activated, anodized titanium and titanium-alloy surfaces will effectively kill peri-operatively introduced staphylococci contaminating an implant surface and constitute an effective means for antibiotic prophylaxis in cementless fixation of orthopaedic hardware.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.