Changes in iron-regulatory gene expression occur in human cell culture models of Parkinson’s disease
文摘

Background

Neuronal iron accumulation is thought to be relevant to the pathogenesis of Parkinson’s disease (PD), although the mechanism remains elusive. We hypothesized that neuronal iron uptake may be stimulated by functional mitochondrial iron deficiency.

Objective

To determine firstly whether the mitochondrial toxin, 1-methyl-4-phenylpyridinium iodide (MPP+), results in upregulation of iron-import proteins and transporters of iron into the mitochondria, and secondly whether similar changes in expression are induced by toxins with different mechanisms of action.

Methods

We used quantitative PCR and Western blotting to investigate expression of the iron importers, divalent metal transporter, transferrin receptor 1 and 2 (TfR1 and TfR2) and mitoferrin-2 and the iron exporter ferroportin in differentiated SH-SY5Y cells exposed to three different toxins relevant to PD, MPP+, paraquat (a free radical generator) and lactacystin (an inhibitor of the ubiquitin–proteasome system (UPS)).

Results

MPP+ resulted in increased mRNA and protein levels of genes involved in cellular iron import and transport into the mitochondria. Similar changes occurred following exposure to paraquat, another inducer of oxidative stress. Lactacystin also resulted in increased TfR1 mRNA levels, although the other changes were not found.

Conclusion

Our results support the hypothesis of a functional mitochondrial iron deficit driving neuronal iron uptake but also suggest that differences exist in neuronal iron handling induced by different toxins.

NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.