Application of 3-Dimensional Computed Tomographic Image Guidance to WATCHMAN Implantation and Impact on Early Operator Learning Curve: Single-Center Experience
文摘
The aim of this study was to examine the impact of 3-dimensional (3D) computed tomographic (CT) guided procedural planning for left atrial appendage (LAA) occlusion on the early operator WATCHMAN learning curve.

Background

Traditional WATCHMAN implantation is dependent on 2-dimensional transesophageal echocardiographic (TEE) sizing and intraprocedural guidance.

Methods

LAA occlusion with the WATCHMAN device was performed in 53 patients. Pre-procedural case plans were generated from CT studies with recommended device size, catheter selection, and C-arm angle for deployment.

Results

All 53 patients underwent successful LAA occlusion with the WATCHMAN. Three-dimensional CT LAA maximal-width sizing was 2.7 ± 2.2 mm and 2.3 ± 3.0 mm larger than 2-dimensional and 3D TEE measurements, respectively (p ≤ 0.0001). By CT imaging, device selection was 100% accurate. There were 4 peri-WATCHMAN leaks (<4.5 mm) secondary to accessory LAA pedunculations. By 2-dimensional TEE maximal-width measurements alone, 62.3% (33 of 53) would have required larger devices. Using 3D TEE maximal-width measurements, 52.8% of cases (28 of 53) would have required larger devices. Three-dimensional TEE length would have inappropriately excluded 10 patients from WATCHMAN implantation. Compared with the average of 1.8 devices used per implantation attempt in PROTECT AF (WATCHMAN Left Atrial Appendage System for Embolic Protection in Patients With Atrial Fibrillation) (82% success rate), the present site averaged 1.245 devices per implantation attempt (100% success rate). There were no intraprocedural screen failures and no major adverse cardiac events.

Conclusions

Three-dimensional CT image case planning provides a comprehensive and customized patient-specific LAA assessment that appears to be accurate and may possibly facilitate reducing the early WATCHMAN implantation learning curve.

NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.