Computing large planar regions in terrains, with an application to fracture surfaces
详细信息    查看全文
文摘
We consider the problem of computing the largest region in a terrain that is approximately contained in some two-dimensional plane. We reduce this problem to the following one. Given an embedding of a degree-3 graph G on the unit sphere S2, whose vertices are weighted, compute a connected subgraph of maximum weight that is contained in some spherical disk of a fixed radius. We give an algorithm that solves this problem in O(n2logn(loglogn)3) time, where n denotes the number of vertices of G or, alternatively, the number of faces of the terrain. We also give a heuristic that can be used to compute sufficiently large regions in a terrain that are approximately planar. We discuss an implementation of this heuristic, and show some experimental results for terrains representing three-dimensional (topographical) images of fracture surfaces of metals obtained by confocal laser scanning microscopy.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.