Effect of grafting architecture on the surfactant-like behavior of clay-poly(NiPAAm) nanohybrids
详细信息    查看全文
文摘
A new class of clay-polymer nanohybrids was synthesized by grafting poly(N-isopropylacrylamide) (PNiPAAm) on the edge of nanoscale silicate platelets (NSPs) through covalently bonded linkers to form various architectures. The inherent ionic character of NSPs and the organic moieties of isopropyl amide in PNiPAAms impart surface active properties to the nanohybrids. Surface tension and particle size measurements were used to determine the critical micelle concentrations (CMCs) of the nanohybrids. It was found that PNiPAAm brushes grafted onto NSPs with the single-headed linkers are loosely packed and can expand easily in water causing inter-hybrid interactions. In contrast, PNiPAAm brushes grafted onto NSPs with the double-headed linkers may alternatively exhibit intra-hybrid interactions and the hybrids tend to exist in a dispersed state. Consequently, the latter has a higher CMC than the former. In addition, the CMC can be tailored by adjusting the grafting density of the linkers on the NSP surfaces. The densely grafted nanohybrids exhibit close inter-hybrid contact resulting in a lower CMC than that for the sparsely grafted nanohybrids. Molecular simulations were also performed to study the effects of the polymer-grafted architecture and the density of the linkers on the micellar behavior of NSP-PNiPAAm hybrids. The simulation results were found to be in good agreement with the experimental observations. Thus, it is possible to control the surface active properties and aggregation of the clay-PNiPAAm hybrids by manipulating the organic grafting architectures of the silicate platelets.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.