Effect of micropores diffusion on kinetics of CH4 decomposition over a wood-derived carbon catalyst
详细信息    查看全文
文摘
In order to optimise hydrogen production from biomass gasification, catalytic conversion of methane contained in a surrogate biomass syngas (CH4 14 % ; CO 19 % ; CO2 14 % ; H2 16 % ; H2O 30 % ; N2 7 % ) is investigated over a fixed bed of porous wood char as a function of temperature (800–1000 °C) and space time (1.6–6.2 min g L−1). Determination of Thiele modulus evidences a change of kinetic regime from chemically- to diffusion-controlled when the temperature increases; this finding is particularly relevant when porous chars having an average pore width of 1 nm are used as catalysts. Mass diffusion transfers are accounted for by a model introducing an internal effectiveness factor. Knudsen diffusion in micropores is shown to limit the conversion rate of methane per unit mass of catalyst, and explains why such a rate is not proportional to the BET surface area, especially when the latter is higher than typically 300 m2/g. It is concluded that diffusion limitations in micropores should be taken into account, otherwise underestimated activation energy and intrinsic kinetic constant are obtained in some experimental conditions.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.