Organic Reaction Systems: Using Microcapsules and Microreactors to Perform Chemical Synthesis
详细信息    查看全文
  • 作者:Ashley R. Longstreet ; D. Tyler McQuade
  • 刊名:Accounts of Chemical Research
  • 出版年:2013
  • 出版时间:February 19, 2013
  • 年:2013
  • 卷:46
  • 期:2
  • 页码:327-338
  • 全文大小:801K
  • 年卷期:v.46,no.2(February 19, 2013)
  • ISSN:1520-4898
文摘
The appetite for complex organic molecules continues to increase worldwide, especially in rapidly developing countries such as China, India, and Brazil. At the same time, the cost of raw materials and solvent waste disposal is also growing, making sustainability an increasingly important factor in the production of synthetic life-saving/improving compounds. With these forces in mind, our group is driven by the principle that how we synthesize a molecule is as important as which molecule we choose to synthesize. We aim to define alternative strategies that will enable more efficient synthesis of complex molecules. Drawing our inspiration from nature, we attempt to mimic (1) the multicatalytic metabolic systems within cells using collections of nonenzyme catalysts in batch reactors and (2) the serial synthetic machinery of fatty acid/polyketide biosynthesis using microreactor systems. Whether we combine catalysts in batch to prepare an active pharmaceutical ingredient (API) or use microreactors to synthesize small or polymeric molecules, we strive to understand the mechanism of each reaction while also developing new methods and techniques.
This Account begins by examining our early efforts in the development of novel catalytic materials and characterization of catalytic systems and how these observations helped forge our current models for developing efficient synthetic routes. The Account progresses through a focused examination of design principles needed to develop multicatalyst systems using systems recently published by our group as examples. Our systems have been successfully applied to produce APIs as well as new synthetic methods. The multicatalyst section is then juxtaposed with our work in continuous flow multistep synthesis. Here, we discuss the design principles needed to create multistep continuous processes using examples from our recent efforts. Overall, this Account illustrates how multistep organic routes can be conceived and achieved using strategies and techniques that mimic biological systems.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.