Photoregenerable, Bifunctional Granules of Carbon-Doped g-C3N4 as Adsorptive Photocatalyst for the Efficient Removal of Tetracycline Antibiotic
详细信息    查看全文
文摘
Environmental remediation employing semiconducting materials offer a greener solution for pollution control. Herein, we report the development of high surface area porous architecture of C3N4 nanosheets by a simple aqueous spray drying process. g-C3N4 nanosheets obtained by the thermal decomposition of urea-thiourea mixture are spray granulated to microspheres using 2 wt% poly vinyl alcohol (PVA) as binder. The post granulation thermal oxidation treatment resulted in in situ doping of carbon leading to improved photophysical properties compared to pristine g-C3N4. The C3N4 granules with surface area values of 150 m2/g rendered repetitive adsorption of tetracycline antibiotic (∼75% in 60 min) and the extended absorption in the visible region facilitated complete photocatalytic degradation upon sunlight irradiation (>95% in 90 min). The delocalized π bonds generated after carbon doping and the macro-meso porous architecture created by the granulation process aided high adsorption capacity (70 mg/g). The photoregenerable, bifunctional materials herein obtained can thus be employed for the adsorption and subsequent degradation of harmful organic pollutants without any secondary remediation processes.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.