Ordered Mesoporous Particles in Titania Films with Hierarchical Structure as Scattering Layers in Dye-Sensitized Solar Cells
详细信息    查看全文
文摘
This work aimed to understand the relationship between the physical properties of scattering particle layers in dye-sensitized solar cells (DSSCs) and their performance, to assist optimization of this component of the DSSC. Highly ordered anatase 2D-hexagonal mesoporous titania (meso-TiO2) nanoparticles with a high surface area and large pore size were fabricated. Meso-TiO2 was used as scattering particles and mixed with titania nanocrystallites at weight proportions ranging from 0 to 100%. Films made from the composites were used as scattering layers in DSSCs. The influence of meso-TiO2 proportion on the structure, morphology, and optical properties of the films were investigated. The results show that the films became more porous, with a larger surface roughness, and had higher surface areas and greater light-scattering effects when meso-TiO2 was incorporated. The performance of these scattering layers in relatively large, 1 cm2 area, DSSCs was studied to link cell performance to the detailed physical properties of the meso-TiO2/nanoparticle films. The optimum composition of scattering layers was obtained by mixing 50 wt % meso-TiO2 with titania nanoparticles.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.