Electronic State-Resolved Electron鈥揚honon Coupling in an Organic Charge Transfer Material from Broadband Quantum Beat Spectroscopy
详细信息    查看全文
文摘
The coupling of electron and lattice phonon motion plays a fundamental role in the properties of functional organic charge-transfer materials. In this Letter we extend the use of ultrafast vibrational quantum beat spectroscopy to directly elucidate electron鈥損honon coupling in an organic charge-transfer material. As a case study, we compare the oscillatory components of the transient reflection (TR) of a broadband probe pulse from single crystals of quinhydrone, a 1:1 cocrystal of hydroquinone and p-benzoquinone, after exciting nonresonant impulsive stimulated Raman scattering and resonant electronic transitions using ultrafast pulses. Spontaneous resonance Raman spectra confirm the assignment of these oscillations as coherent lattice phonon excitations. Fourier transforms of the vibrational quantum beats in our broadband TR measurements allow construction of spectra that we show report the ability of these phonons to directly modulate the electronic structure of quinhydrone. These results demonstrate how coherent ultrafast processes can characterize the complex interplay of charge transfer and lattice motion in materials of fundamental relevance to chemistry, materials sciences, and condensed matter physics.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.