Synthesis of Iminodiacetate Functionalized Polypropylene Films and Their Efficacy as Antioxidant Active-Packaging Materials
详细信息    查看全文
文摘
The introduction of metal-chelating ligands to the food-contact surface of packaging materials may enable the removal of synthetic chelators (e.g., ethylenediamine tetra-acetic acid (EDTA)) from food products. In this study, the metal-chelating ligand iminodiacetate (IDA) was covalently grafted onto polypropylene surfaces to produce metal-chelating active-packaging films. The resulting films were able to chelate 138.1 ± 26 and 210.0 ± 28 nmol/cm<sup>2sup> Fe<sup>3+sup> and Cu<sup>2+sup> ions, respectively, under acidic conditions (pH 3.0). The films demonstrated potent antioxidant efficacy in two model food systems. In an emulsified-oil system, the chelating materials extended the lag phase of both lipid hydroperoxide and hexanal formation from 5 to 25 days and were as effective as EDTA. The degradation half-life of ascorbic acid in an aqueous solution was extended from 5 to 14 days. This work demonstrates the potential application of surface-grafted chelating IDA ligands as effective antioxidant active food-packaging materials.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.